

DATA REPORT

MONITORING WELL SAMPLING SPRING 2006

2400/2324 CURTISS DOWNERS GROVE, ILLINOIS

DISCLAIMER:

Some formatting changes may have occurred when the original document was printed to PDF; however, the original content remains unchanged.

JUNE 2006 REF. NO. 030409 (05)

Prepared by: Conestoga-Rovers & Associates

1801 Old Highway 8 Suite 114 St. Paul, Minnesota 55112

Office: (651) 639-0913 Fax: (651) 639-0923

web: http://www.CRAworld.com

TABLE OF CONTENTS

			Page
1.0	INTRO	DDUCTION	1
2.0	2.1	THE THE CHAINS THE ENTREE THE THE COMMISSION OF THE CHAIN COMMISSION OF THE CH	2
		MONITORING WELL SAMPLING	
3.0	INVES	TIGATION RESULTS	
	3.1	GEOLOGICAL DATA	4
	3.2	LABORATORY CHEMICAL DATA	4

<u>LIST OF FIGURES</u> (Following Report)

FIGURE 1.1	SITE LOCATION
FIGURE 2.1	SITE PLAN
FIGURE 2.2	GROUNDWATER ELEVATIONS IN DRIFT (MARCH 15, 2006)
FIGURE 2.3	GROUNDWATER ELEVATIONS IN BEDROCK (MARCH 15, 2006)

LIST OF TABLES (Following Report)

TABLE 2.1	MONITORING WELL CONSTRUCTION SUMMARY
TABLE 2.2	MONITORING WELL DEVELOPMENT SUMMARY
TABLE 2.3	GROUNDWATER ELEVATION SUMMARY
TABLE 2.4	MONITORING WELL SAMPLING SUMMARY (FEBRUARY 2006)
TABLE 2.5	MONITORING WELL SAMPLING SUMMARY (MARCH 2006)
TABLE 3.1	SUMMARY OF DETECTED COMPOUNDS (FEBRUARY 2006)
TABLE 3.2	SUMMARY OF DETECTED COMPOUNDS (MARCH 2006)

LIST OF APPENDICES

APPENDIX A MONITORING WELL LOGS

APPENDIX B LABORATORY ANALYTICAL REPORTS

APPENDIX C DATA VALIDATION MEMOS AND

CHAIN OF CUSTODY FORMS

1.0 <u>INTRODUCTION</u>

This document has been prepared by Conestoga-Rovers & Associates (CRA) to present additional hydrogeological and chemical data for the properties located at 2324 and 2400 Curtiss Street, Downers Grove, DuPage County, Illinois (Site). The location of the Site is shown on Figure 1.1.

The work documented within this report was conducted pursuant to the Limited Data Collection Work Plan prepared by CRA in December 2005, which was reviewed by USEPA.

2.0 FIELD PROGRAM

The following activities were conducted as part of the Spring 2006 hydrogeological investigation.

2.1 MONITORING WELL INSTALLATION

In accordance with the approved work plan, additional monitoring wells were installed to provide additional chemical characterization and to further define the groundwater flow direction and provide horizontal and vertical hydraulic gradients. Figure 2.1 presents the Site Plan and location of the monitoring wells.

The following monitoring wells were installed in January 2006:

- RMW-1I and 1D;
- RMW-2D;
- RMW-3D;
- RMW-4D;
- RMW-5D;
- RMW-6D; and
- RMW-7D.

A monitoring well construction summary is presented on Table 2.1. Well logs are included in Appendix A.

Monitoring well boreholes were drilled from the ground surface to the top of bedrock using rotosonic drilling and sampling methods. The dolomite bedrock was cored using an HQ bit, which provided a 2.5-inch diameter core. Monitoring wells were constructed with 2-inch diameter, 5-foot long, stainless steel well screens attached to 2-inch diameter PVC riser. The borehole annulus was backfilled with silica sand to a minimum of 2-feet above the top of the screen, a 2-foot thick bentonite pellet seal, and a bentonite slurry to the surface.

New monitoring wells were developed by pumping and surging. A summary of the monitoring well development is presented on Table 2.2.

2.2 MONITORING WELL SAMPLING

Monitoring well sampling was conducted in February and March of 2006. The February 2006 sample round included only the monitoring wells installed in January 2006. The March sample round included all new and existing monitoring wells on Site. A full round of water level measurements was collected from new and existing Site monitoring wells on March 15, 2006. A summary of water level measurements collected during March and April 2006 is presented on Table 2.3. Water table contours from the March 15, 2006 monitoring round are presented on Figure 2.2 and Figure 2.3.

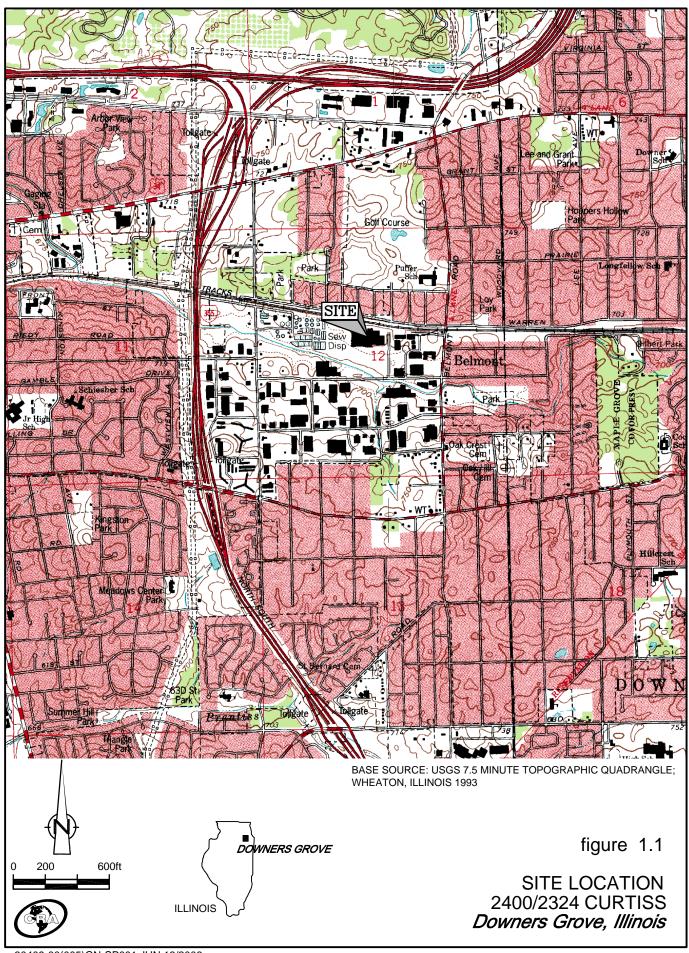
Monitoring wells were sampled using low-flow techniques. Temperature, pH, conductivity, dissolved oxygen, oxidation/reduction potential and turbidity were measured during purging and at the time of sampling. The sampling summaries for February and March 2006 are presented on Table 2.4 and Table 2.5.

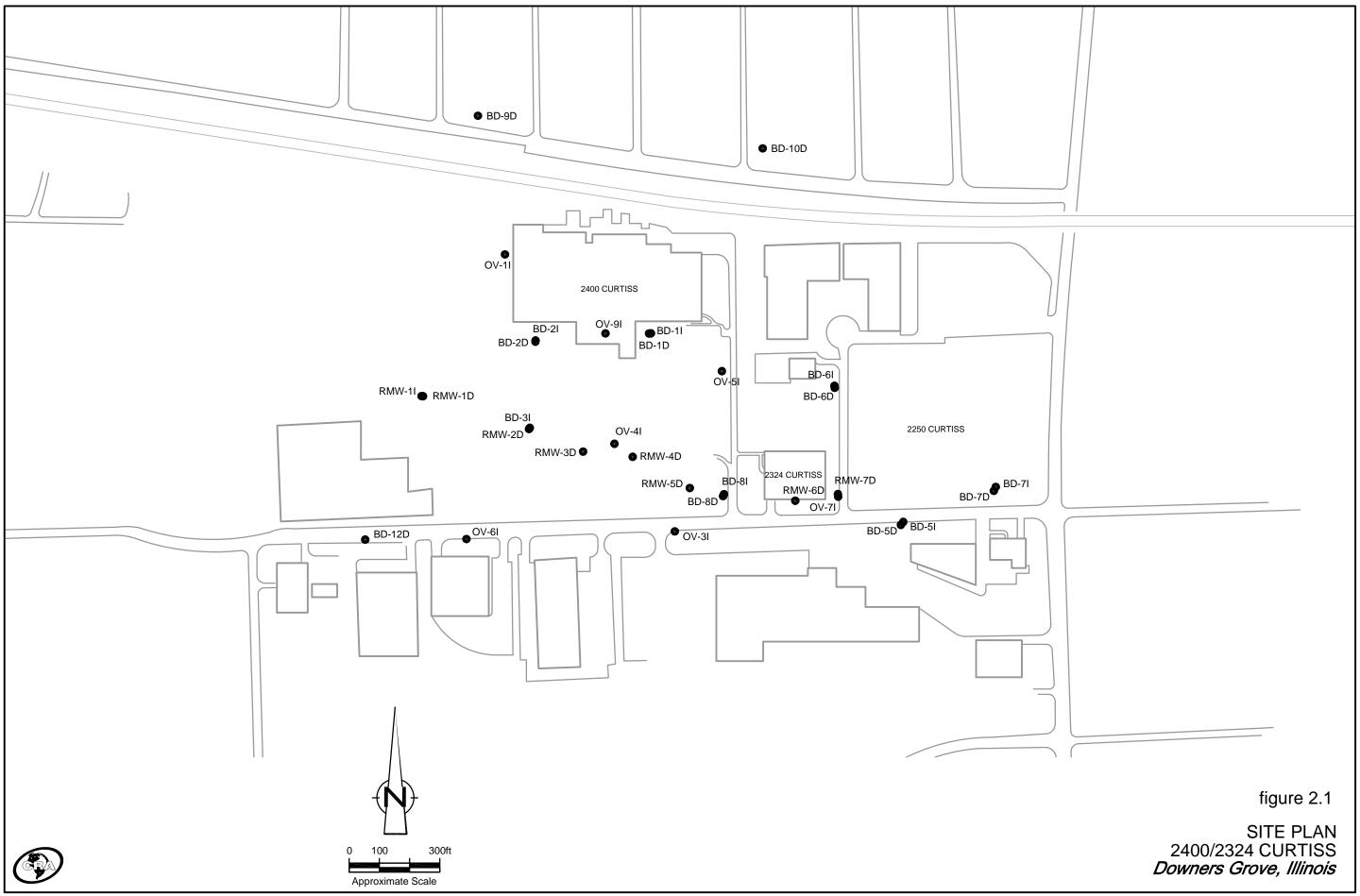
Groundwater samples were collected for analysis of volatile organic compounds (VOCs) (USEPA Method 8260B). Samples were collected in accordance with the Quality Assurance/Quality Control (QA/QC) procedures outlined in the approved Quality Assurance Project Plan (QAPP). Duplicate and field rinse blank samples were collected at a frequency of 1:10. Matrix spike and matrix spike duplicate (MS/MSD) samples were collected at a frequency of 1:20. Trip blanks for VOC analysis were also analyzed in accordance with the QAPP.

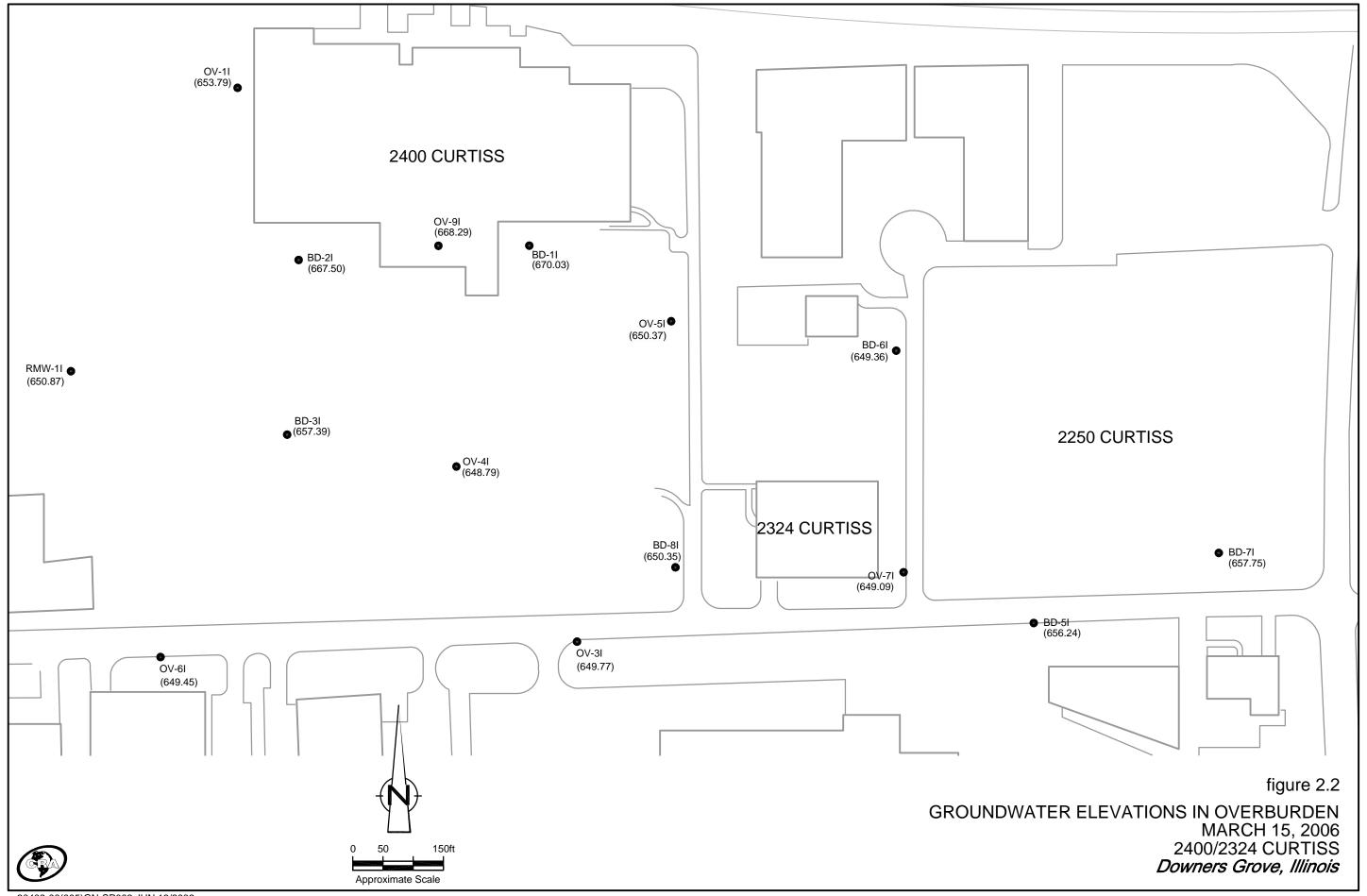
The water samples collected by CRA for VOC analysis were shipped via overnight delivery to Severn Trent Laboratories (North Canton, Ohio) under standard chain-of-custody procedures.

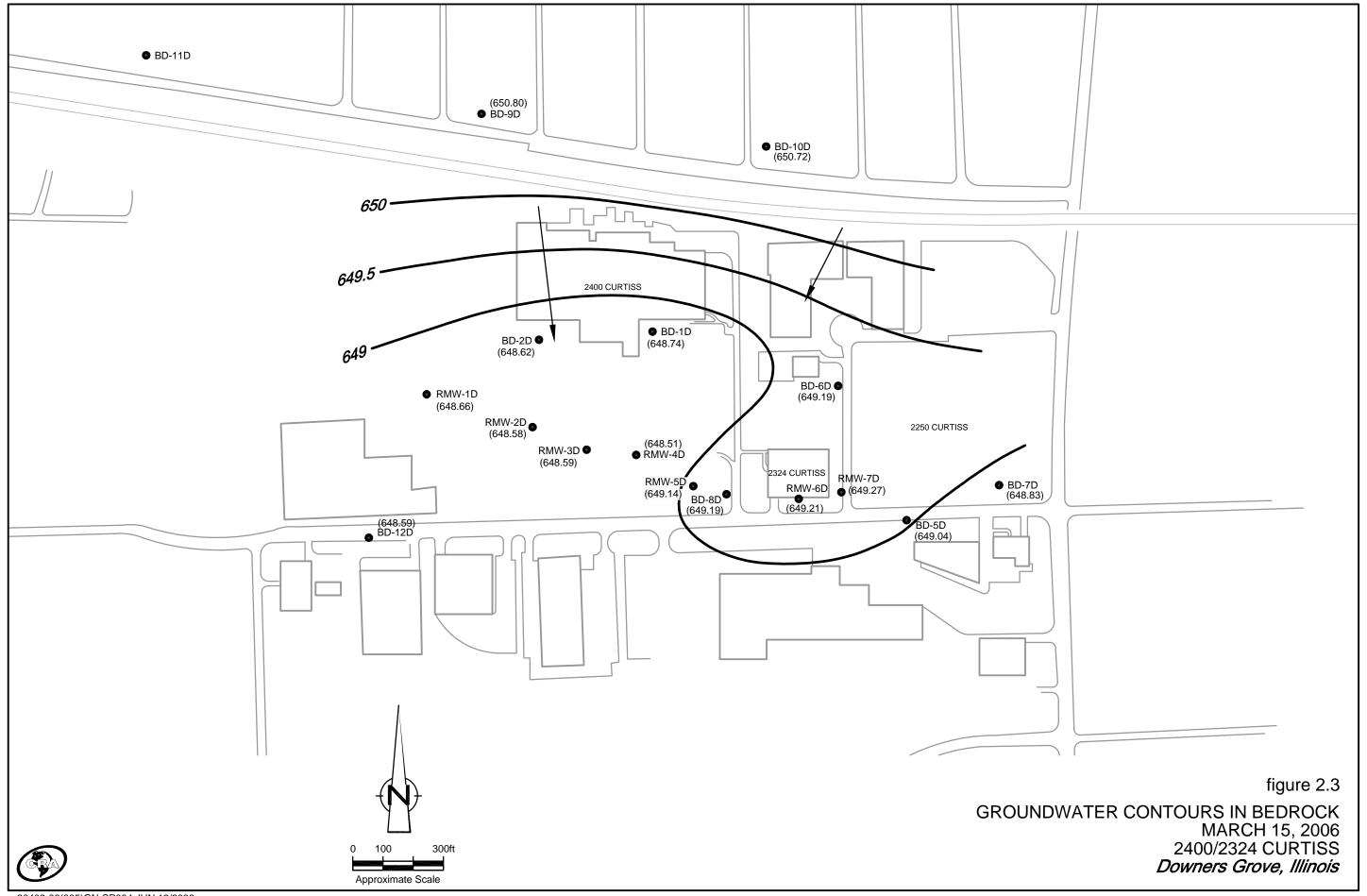
3.0 <u>INVESTIGATION RESULTS</u>

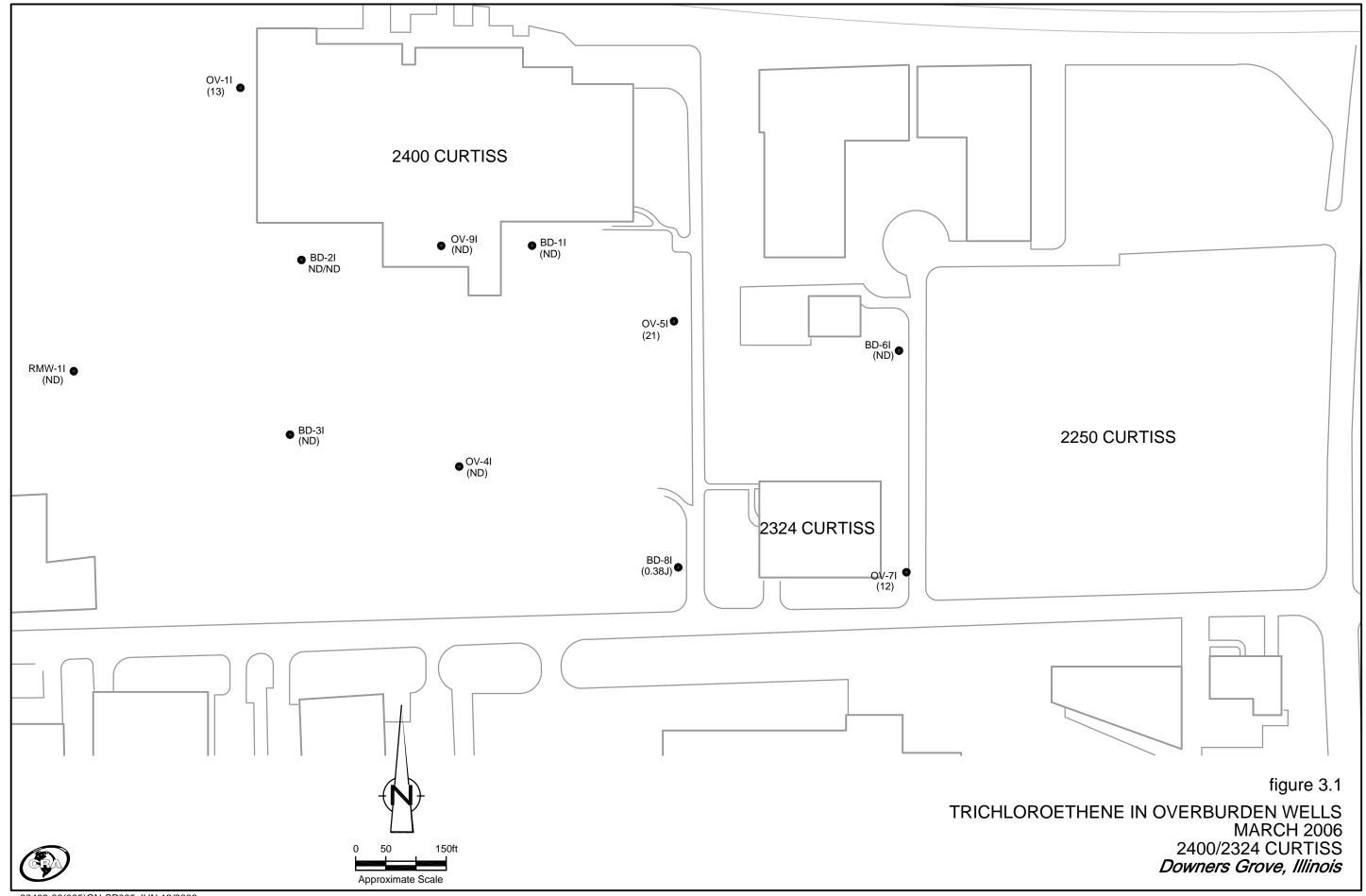
3.1 GEOLOGICAL DATA

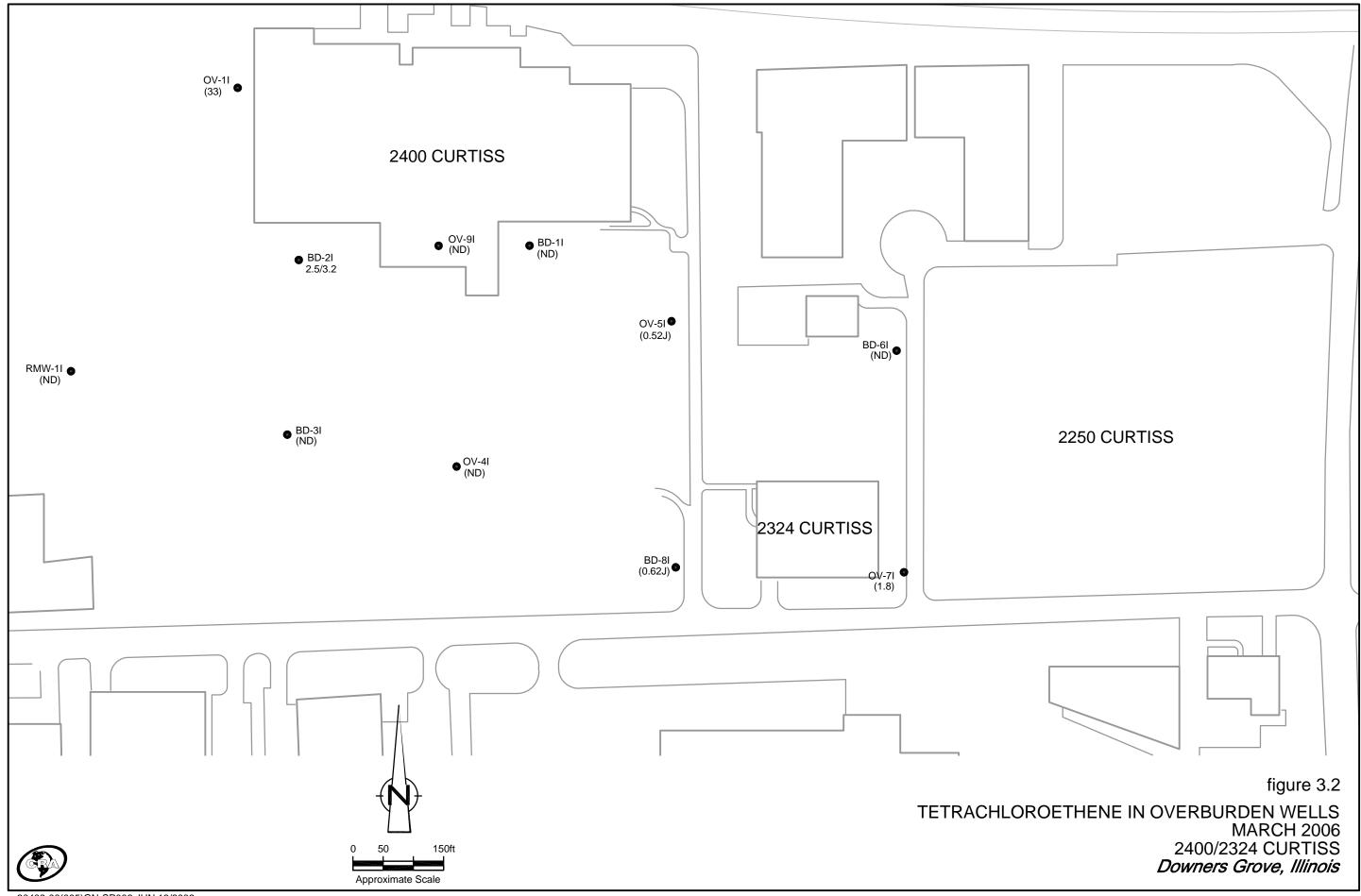

The depth to bedrock at the seven well locations ranged from 48 feet at RMW-1D to 67 feet at RMW-4D. Soils in the overburden consisted of interbedded clays, silts, and sands typical of mixed glacial till and alluvial deposits. The bedrock is Silurian aged dolomite, (Illniois State Geological Survey Web Site). Only the upper portion of the dolomite was penetrated for this investigation. The upper surface of the dolomite was highly weathered, generally becoming moderately to slightly weathered with depth. Horizontal and vertical fractures were encountered frequently at all locations. This is supported by the Rock Quality Designations (RQDs) determined for each coring interval, as shown on the well logs. The average RQD for the seven locations was 39%, where 100% would be unfractured rock. The RQD was generally lowest at the top of the bedrock and improved with depth.

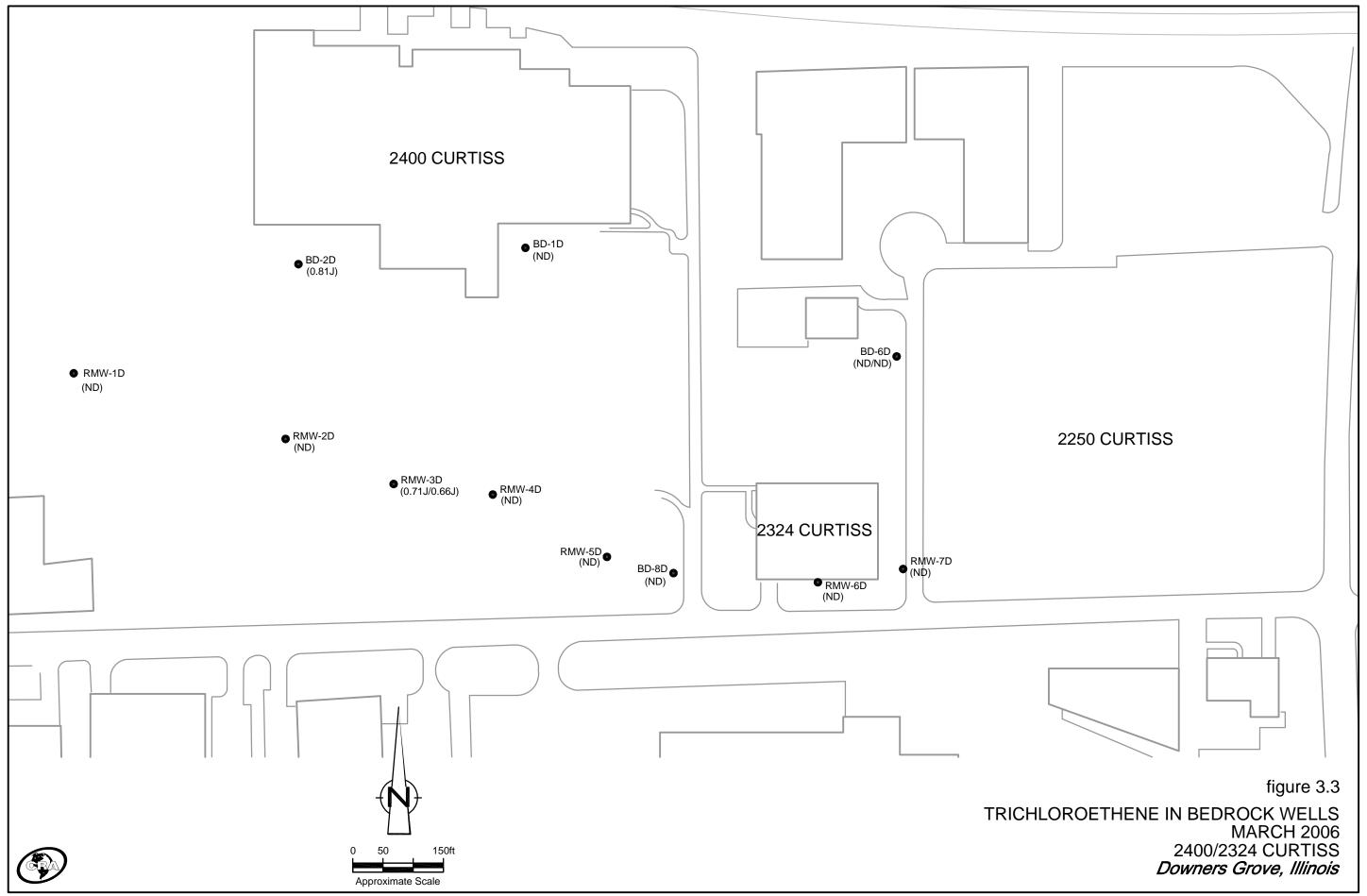

3.2 LABORATORY CHEMICAL DATA


Summaries of detected VOCs are presented in Table 3.1 and Table 3.2.


A total of six VOCs (1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethene, 1,1,1-trichloroethane, and trichloroethene) were detected in select monitoring well samples.


Trichloroethene and tetrachloroethene concentrations in overburden wells and bedrock wells are presented on Figures 3.1 through 3.4. Laboratory analytical reports are provided in Appendix B. CRA's data quality assessment and validation memos are provided in Appendix C.





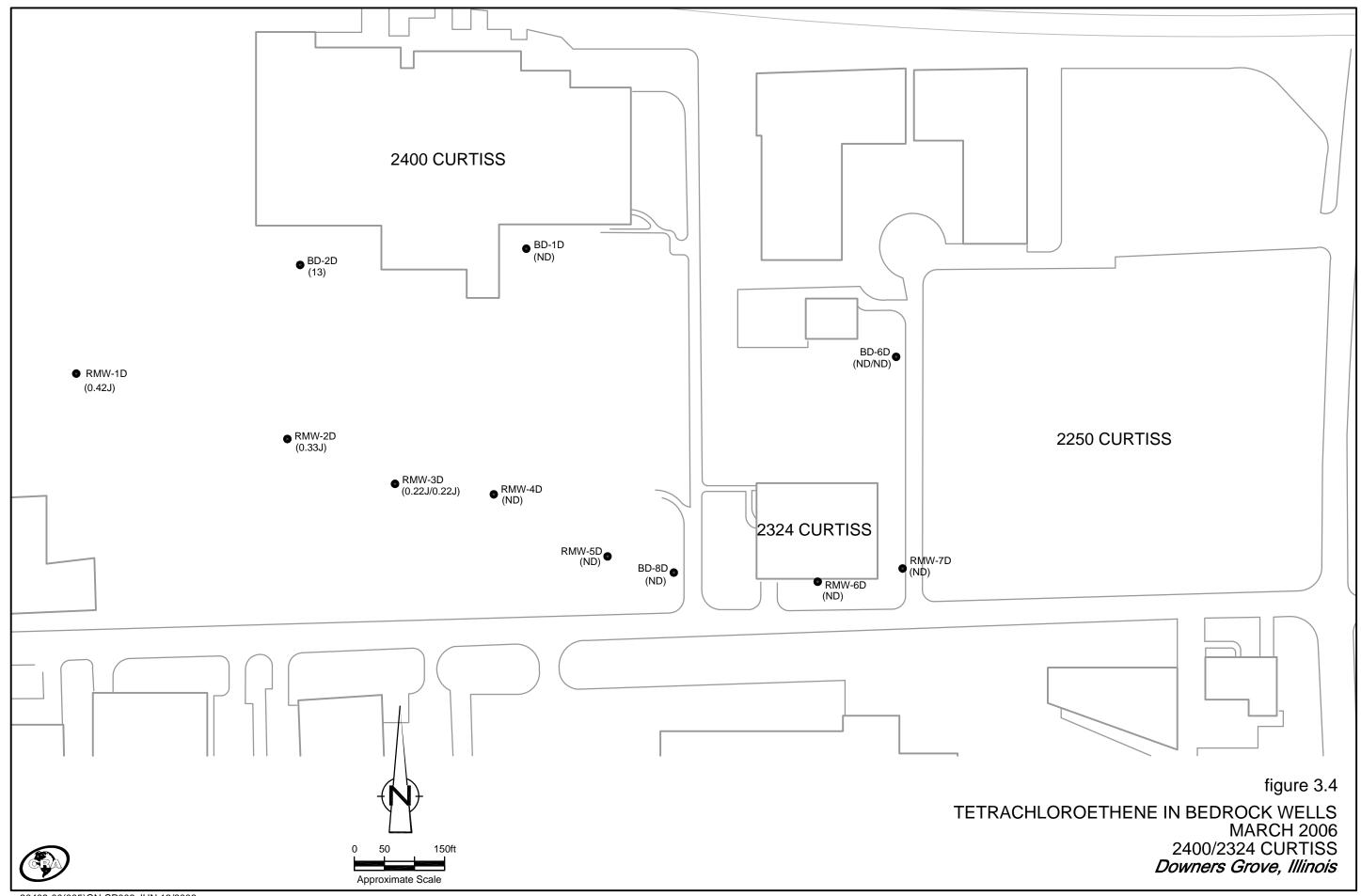


TABLE 2.1

MONITORING WELL CONSTRUCTION SUMMARY
2400/2324 CURTISS
DOWNERS GROVE, IL

Well Location	Top of Casing (ft. AMSL)	Ground Elevation (ft. AMSL)	Well Depth (ft. bgs)	Casing Diameter (in.)	Casing Material	Screened Interval (ft. bgs)	Formation at Bottom of Well
RMW-1 I	691.82	689.11	45	2	SS	39-44	Lower Sand
RMW-1 D	691.43	689.34	68	2	SS	62-67	Shallow Bedrock
RMW-2 D	688.63	686.2	61	2	SS	55-60	Shallow Bedrock
RMW-3 D	688.49	686.8	70	2	SS	64-69	Shallow Bedrock
RMW-4 D	690.76	691.2	80	2	SS	<i>7</i> 5-80	Shallow Bedrock
RMW-5 D	690.54	688.01	7 5	2	SS	70-75	Shallow Bedrock
RMW-6 D	689.46	689.78	7 5	2	SS	69-74	Shallow Bedrock
RMW-7 D	689.27	689.64	65	2	SS	60-65	Shallow Bedrock

MONITORING WELL DEVELOPMENT SUMMARY 2400/2324 CURTISS DOWNERS GROVE, IL

Well Location	Date	Volume Removed (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Turbidity (NTU)	Арреагапсе	Development Method
Document	Duit	\2m1	PΠ	(0)	(Hib/Chi)	(111 (4)	элерситинсе	Memon
RMW-11	1/20/2006	5 Dry at 5 gallons	6.96	12.36	1.287	>1000	silty brown	surge and pump
RMW-1D	1/20/2006	8	7.11	10.83	1.321	438	cloudy	surge and pump
		12	6.89	10.96	1.334	261	cloudy	surge and pump
		16	6.89	11.1	1.335	114.1	slightly cloudy	surge and pump
		20	6.87	11.14	1.336	99.8	slightly cloudy	surge and pump
		24	6.89	11.11	1.332	97.6	slightly cloudy	surge and pump
•	2/6/2006	1 44					clear	pump
	2/7/2006	264	7.16	11.5	0.762		clear	pump
		384	7.24	12.1	0.791		clear	pump
		504	7.3	12	0.807		clear	pump
		664	7.27	11.9	0.805		clear	pump
RMW-2D	1/20/2006	12	7.15	12.44	1.253	244	cloudy	surge and pump
		16	7.09	12.25	1.243	7 9.6	slightly cloudy	surge and pump
		20	7.09	12.21	1.245	45.7	slightly cloudy	surge and pump
		24	7.06	12.18	1.245	38.4	clear	surge and pump
		28	7.06	12.17	1.241	28.6	clear	surge and pump
	2/7/2006	133	7.3	13.2	0.74		clear	pump
		238	7.25	12.6	0.755		clear	pump
		343	7.24	12.9	0.756		clear	pump
	2/8/2006	368						pump
		408	7.28	12.7	0.752		clear	pump
		458	7.29	12.9	0.757		clear	pump
		578	7.26	12.8	0.766		clear	pump
RMW-3D	1/20/2006	10	6.95	11.61	1.94	366	cloudy	surge and pump
		15	6.96	11.58	1.92	101.4	cloudy	surge and pump
		20	6.9	11.55	1.91	77.6	slightly cloudy	surge and pump
		25	6.91	11.54	1.9	68.6	slightly cloudy	surge and pump
	•	30	6.91	11.56	1.9	63.7	slightly cloudy	surge and pump
	2/8/2006	50	7.14	12.9	1.155		slightly cloudy gray	pump
		143	7.14	13.5	1.182		clear	pump
		293	7.18	12.7	1.199		clear	pump
		44 3	7.19	12.8	1.207		clear	pump
		593	7.18	12.8	1.208		clear	pump
		718					clear	pump
RMW-4D	1/20/2006	15	6.79	13.57	0.329	579	cloudy	surge and pump
	-	20	6.67	12.88	1.278	93.9	slightly cloudy	surge and pump
		25	6.52	12.96	1.262	24.3	clear	surge and pump
		35	6.51	12.9	1.262	18.3	clear	surge and pump
		45	6.48	12.98	1.26	24.3	clear	surge and pump
	1/31/2006	205	7.26	14.5	0.741		slightly cloudy	pump
•		300	7.27	14.4	0.74			pump
		450	7.28	14.2	0.745		clear	pump
		615	7.29	14.1	0.744			pump

MONITORING WELL DEVELOPMENT SUMMARY 2400/2324 CURTISS DOWNERS GROVE, IL

Well		Volume Removed		Temperature	Conductivity	Turbidity		Development
Location	Date	(gal)	pН	(°C)	(mS/cm)	(NTU)	Appearance	Method
RMW-5D	1/20/2006	12	7.07	13.16	1.095	26	clear	surge and pump
10.111 02	1, 20, 2000	18	7.08	13	1.096	25.1	clear	surge and pump
	÷	24	7.07	12.96	1.106	24.6	clear	surge and pump
		30	7.08	12.98	1.102	25.2	clear	surge and pump
	1/31/2006	72	7.28	13.3	0.743		clear	pump
		115	7.51	13.7	0.708		clear	pump
		130	7.34	13.7	0.703		clear	pump
•	2/3/2006	240	7.42	13.9	0.824		clear	pump
		350	7.39	13.8	0.792	- -	clear	pump
RMW-6D	1/20/2006	12	7.14	11.96	1.201	37.1	slightly cloudy	surge and pump
•		18	7.06	12.07	1.198	15.32	clear	surge and pump
		24	7.04	12.11	1.19	14.76	clear	surge and pump
		30	7.06	12.06	1.188	14.88	clear	surge and pump
		36	7.06	12.11	1.189	14.66	clear	surge and pump
		42	7.07	12.12	1.196	14.61	clear	surge and pump
	2/2/2006	142	7.28	14.5	0.791		clear	pump
		242	7.31	14.3	0.761		clear	pump
		342	7.29	14.3	0.776		clear	pump
		442	7.31	14.5	0.78		clear	pump
		542	7.32	14.6	0.779		clear	pump
		642	7.32	14.4	0.777		clear	pump
RMW-7D	1/20/2006	10	7.52	12.29	0.999	379	cloudy	surge and pump
		20	6.73	12.35	1.108	152.3	slightly cloudy	surge and pump
		28	6.68	12.4	1.125	49.7	clear	surge and pump
		32	6.6	12.44	1.118	49.3	clear	surge and pump
		36	6.59	12.38	1.13	41.2	clear	surge and pump
	2/1/2006	136	7.07	14.7	0.755		clear	pump
		236	7.33	13	0.699		clear	pump
		336	7.28	13.4	0.676		clear	pump
		436	7.26	13.3	0.668	- -	clear	pump
		536	7.25	13.1	0.66		clear	pump
		636	7.25	13.1	0.657		clear	pump

TABLE 2.3

GROUNDWATER ELEVATION SUMMARY 2400/2324 CURTISS DOWNERS GROVE, IL

Well	Top of Casing		,	
Location	Elevation	3/6/2006	3/15/2006	4/12/2006
Darge March				
<u>Drift Wells</u> BD-1 I	=	CCO 00	(70.00	
BD-1 I	696.56	669.98	670.03	
BD-2 I BD-3 I	701.78 688.00	667.67	667.50	
BD-5 I		656.48	657.39	 656 55
BD-5 I BD-6 I	689.05	 	656.24	656.75
BD-7 I	692.91	649.45	649.36	649.93
	690.02	NM (50.02	657.75	657.14
BD-8 I	689.86	650.03	650.35	650.83
BD-9 I	715.19			
OV-1 I	702.56	653.86	653.79	
OV-3 I	690.08		649.77	650.09
OV-4 I	691.04	648.76	648.79	649.35
OV-5 I	694.56	650 . 35	650.37	650.86
OV-6 I	693.60		649.45	
OV-7 I	688.90	649.17	649.09	649.72
OV-8 I	690.78			654.75
OV-9 I	703.04	668.30	668.29	
RMW-1 I	691.82	650.64	650.87	
Bedrock We	ells			
BD-1 D	696.25	648.78	648.74	
BD-2 D	701.78	648.66	648.62	~~
BD-5 D	688.94		649.04	649.68
BD-6 D	692.97	649.26	649.19	649.77
BD-7 D	689.64		648.83	649.27
BD-8 D	690.00	649.25	649.19	649.80
BD-9 D	715.12		650.80	
BD-10 D	717.35		650.72	
BD-11 D	703.69			~~
BD-12 D	700.30		648.59	
RMW-1 D	691.43	648.71	648.66	<u></u>
RMW-2 D	688.63	648.66	648.58	<u></u>
RMW-3 D	688.49	648.66	648.59	
RMW-4 D	690.76	648.57	648.51	649.17
RMW-5 D	690.54	649,24	649.14	649.75
RMW-6 D	689.46	649.32	649.21	
RMW-7 D	689.27	649.27	649.27	
		•		

Notes:

All elevations shown in feet above mean sea level (ASML).

⁻⁻ Not measured

TABLE 2.4

MONITORING WELL SAMPLING SUMMARY FEBRUARY 2006 DOWNERS GROVE, ILLINOIS

CRA ID#	Sample Date	рН	Temp (°C)	Cond (mS/cm)	- Janounty Jampie		QA/QC		
RMW-1D	2/13/06	7.26	10.59	1.540	1.4	73.9	3.4	GW-021306-DS-01	
RMW-1I	2/13/06	8.29	10.68	1.376	12.3	81	>2000	GW-021306-CA-05	-
RMW-2D	2/13/06	7.70	9.59	1.392	1.4	62	6.8	GW-021306-CA-02	DUP (-03)
RMW-3D	2/14/06	6.82	11.15	2.118	3.0	123	4.2	GW-021306-CA-06	-
RMW-5D	2/14/06	7.08	11	1.377	6.3	103	3.7	GW-021306-CA-10	_
RMW-6D	2/14/06	7.60	14.45	1.318	3.8	81	4.9	GW-021306-CA-07	-
RMW-4D	2/14/06	7.50	13.12	1.457	4.5	99	0.5	GW-021306-CA-08	-
RMW-7D	2/15/06	*	11.76	1.246	9.3	130	3.7	GW-021306-CA-11	

Note: *-pH meter failed

TABLE 2.5

MONITORING WELL SAMPLING SUMMARY
MARCH 2006

DOWNERS GROVE, ILLINOIS

CRA ID#	Sample Date	pН	Temp (°C)	Cond (mS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTU)	Sample ID#	QA/QC
BD-1D	3/8/06	6.61	12.96	1.17	0.28	238	3	GW-030806-JK-024	_
BD-1I	3/8/06	6.27	14.6	2.41	4.11	238	4	GW-030806-JK-022	-
BD-2D	3/7/06	6.5	13.7	1.47	0.32	314	15	GW-030706-JK-016	
BD-2I	3/7/06	6.26	14.45	2.15	2.98	328	4.9	GW-030706-JK-014	DUP (-015
BD-3I	3/7/06	7.13	12.34	1.85	3.31	114	>1000	GW-030706-JK-006	_
BD-6D	3/8/06	7.28	12.31	1.085	0.26	-18	5.95	GW-030806-JK-026	DUP (-027
BD-6I	3/8/06	7.19	13.19	1.395	0.2	-71	8.2	GW-030806-JK-028	
BD-8D	3/7/06	6.68	12.01	1.166	0.34	241	32	GW-030706-JK-011	
BD-8I	3/7/06	6.53	12.77	2.67	2.2	252	24	GW-030706-JK-012	
OV-1I	3/8/06	6.68	11.69	2.33	1.77	229	525	GW-030806-JK-030	
OV-4I	3/6/06	6.77	12.57	1.208	0.38	294	27	GW-030606-JK-004	-
OV-5I	3/8/06	6.44	13.6	2.74	0.26	5	32	GW-030806-JK-021	-
OV-7I	3/8/06	7 .3	12.51	1.62	2.94	54	8.7	GW-030806-JK-019	
OV-9I	3/7/06	6.4	15.44	2.69	5.79	311	12	GW-030706-JK-013	-
RMW-1D	3/6/06	7.11	11.41	1.23	0.28	0.41	25	GW-030606-JK-003	
RMW-1I	3/6/06	7.69	12.38	1.309	1.34	170	390	GW-030606-JK-001	
RMW-2D	3/7/06	7.2	11.35	1.068	0.48	17	9.5	GW-030706-JK-005	_
RMW-3D	3/7/06	7.16	12.19	1.61	1.61	78	9.7	GW-030706-JK-007	DUP (-008
RMW-5D	3/7/06	7.24	11.94	1.13	0.26	-71	8.47	GW-030706-JK-010	_
RMW-6D	3/8/06	7.2	12.6	1.098	0.34	-66	9.6	GW-030806-JK-018	
RMW-7D	3/8/06	7.3	12.92	1.068	0.2	-41	7.3	GW-030806-JK-020	
RMW-4D	3/6/06	6.71	12.66	1.334	0.44	317	1.98	GW-030606-JK-002	

TABLE 3.1

SUMMARY OF DETECTED COMPOUNDS (FEBRUARY 2006) 2400/2324 CURTISS DOWNERS GROVE, ILLINOIS

				1,1-Dichloroethane			Tetrachloroethene			1,1,1-Trichloroethane		Trichloroethene	
Location	Date			μg/L			μg/L			μg/L		μg/L	
RMD-1D	2/13/06		<	1			0.57	J	<	1	<	1	
RMD-2D	2/13/06		<	1			0.52	J	<	1	<	1	
RMD-2D	2/13/06	D	<	1			0.50	J	<	1	<	1	
RMW-1I	2/14/06		٧	1		<	1		<	1	<	1	
RMW-3D	2/14/06			0.68	J		0.31	J		1.7		0.86	J
RMW-6D	2/14/06		٧	1		<	1		<	1	<	1	
RMW-4D	2/14/06		٧	1		<	1		<	1	 <	1	
RMW-5D	2/14/06		٧	1		<	1		<	1	<	1	
RMW-7D	2/15/06		<	1		<	1		<	1	<	1	

Notes:

D - Duplicate.

R - Rejected

J - Estimated.

TABLE 3.2

SUMMARY OF DETECTED COMPOUNDS (MARCH 2006) 2400/2324 CURTISS DOWNERS GROVE, ILLINOIS

						T		
			1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene
Location	Date		$\mu g/L$	μg/L	μg/L	μg/L	μg/L	μg/L
BD-1D	3/8/06				,	< 1		
BD-1I	3/8/06						0.68 J	
BD-2D	3/7/06					13	0.41 [0.81 J
BD-2I	3/7/06					2.5		
BD-2I	3/7/06	D				3.2		
BD-3I	3/7/06					< 1		
BD-6D	3/8/06					< 1		
BD-6D	3/8/06	D				< 1		
BD-6I	3/8/06					< 1		
BD-8D	3/7/06					< 1		
BD-8I	3/7/06					0.62 J	0.59 [0.38 [
TW-1	3/8/06					< 1	7	
OV-1I	3/9/06					33	0.52 J	13
OV-4I	3/6/06		0.29 J					
OV-5I	3/8/06		4.7	0.45 J		0.52 J	12	21
OV-7I	3/8/06				2.3	1.8	0.22 J	12
OV-9I	3/7/06						0.27 J	
RMW-1D	3/6/06		·			0.42 J		
RMW-1I	3/6/06				-	< 1		
RMW-2D	3/7/06	\vdash				0.33 J		
RMW-3D	3/7/06		0.66 J			0.22 J	1.3	0. 7 1 J
RMW-3D	3/7/06	D	0.63 J			0.22 J	1.3	0.66 J
RMW-4D	3/6/06					< 1		
RMW-5D	3/7/06					< 1		
RMW-6D	3/8/06					< 1		
RMW-7D	3/8/06					< 1		

Notes:

D - Duplicate.

J - Estimated.

APPENDIX A

MONITORING WELL LOGS

Page 1 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-1D

DATE COMPLETED: January 11, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WEL ft BGS ft BGS N' VALUE (mdd) € REC (<u>⊟</u> Protective Cover TOPSOIL, with grass and roots 0.3 CLS SANDY CLAY, trace gravel and silt, stiff, low plasticity, dark brown, slightly moist Concrete Surface Seal 2.0 0.9 - trace sand, gray at 1.4ft BGS 2 - with silt, no gravel at 2.1ft BGS 2.0 1.1 - some sand and gravel, hard, brown at 3.9ft 0.3 12 2.0 1.2 5.5 SM SILTY SAND, fine grained, some gravel, 6 2" Dia. well graded, loose, brown, dry Stainless Steel Casing 2.0 1.1 8 1.3 - some silt and clay at 9.1ft BGS 10 2.0 1.0 - 12 - trace clay, medium grained at 12.5ft BGS 0.8 14 - some clay, reddish brown, moist at 14.0ft 1.1 - 16 0.0 18 0.0 - medium to fined grained sand, trace cobbles, light brown, slightly moist at 20.0ft BGS - 20 Bentonite 2.0 2.8 - 22 2.0 3.1 24 3.0 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

STATIC WATER LEVEL \$\ \mathbf{T}\$ 1/10/06

Page 2 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

CORP.GDT

SA

030409-BEDROCK MW.GPJ

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-1D

DATE COMPLETED: January 11, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WELL ft BGS ft BGS (mdd) € REC (PID (1.0 26 2.0 2.6 - trace clay, moist at 27.4ft BGS 28 2.8 30 2.0 0.7 32 0.6 - saturated at 33.0ft BGS 34 1.8 MLS SANDY SILT, soft, moderate plasticity, gray, very moist 1.8 36 1.7 37.1 SP SAND, medium grained, some gravel, poorly graded, compact, brown, saturated 38 - fine to medium grained, very moist at 38.3ft 1.4 40 40.7 MLS SANDY SILT, trace gravel, soft, low 1.0 plasticity, gray, wet 42 8.0 44 1.0 0.7 0.7 46 0.9 48 - weathered bedrock, tan from 48.1 to 55.0ft BGS 1.1

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL \$\ 1/10/06

Page 3 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

HOLE DESIGNATION: RMW-1D

DATE COMPLETED: January 11, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves LOCATION: Downers Grove, Illinois DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WELI ft BGS ft BGS PID (ppm) N' VALUE € REC (2.0 0.6 - 52 8.0 2.0 - 54 0.7 55.0 - no stratigraphy - outer casing set from 55.0 56 - 58 END OF OVERBURDEN HOLE @ 58.0ft BGS 60 62 64 - 66 -68 - 70 - 72

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL ▼ 1/10/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 4 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-1D

DATE COMPLETED: January 11, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELI	RUN NUMBER	CORE RECOVERY %	RQD%	Water Return (gallons)
-60 -62 -64 -68 -70 -72	DOLOSTONE, fine grained, well cemented, massive, bluish-tan - fragmented, unweathered from 58.4 to 58.7ft BGS - horizontal fracture, moderately weathered, sand infilled at 59.0ft BGS - horizontal fracture, moderately weathered at 59.1ft BGS - horizontal fracture, moderately weathered, oxidized at 59.9ft BGS - fragmented, moderately weathered, oxidized from 60.1 to 60.6ft BGS - vertical fracture, slightly, weathered, oxidized from 60.6 to 61.4ft BGS - horizontal fracture, moderately weathered, silt infilled at 61.4ft BGS - horizontal fracture, moderately weathered, oxidized at 62.5ft BGS - horizontal fracture, moderately weathered, oxidized at 62.7ft BGS - horizontal fracture, moderately weathered, oxidized at 63.2ft BGS - horizontal fracture, slightly weathered at 64.3ft BGS - horizontal fracture, slightly weathered at 65.6ft BGS - horizontal fracture, slightly weathered at 65.9ft BGS - horizontal fracture, slightly weathered at 66.4ft BGS - horizontal fracture, slightly weathered at 66.4ft BGS	68.0	WELL DETAILS Screened interval: 62.0 to 67.0ft BGS Length: 5ft Diameter: 2in Slot Size: 10 Material: Factory-slotted Stainless Steel Seal: 58.0 to 60.0ft BGS Material: Bentonite Chips Sand Pack: 60.0 to 68.0ft BGS Material: #5 Silica Sand	NOW 1 2	CONE	0 33 17	- 40 ~ 110 ~
74 76 78			Matenal: #5 Silica Sand		:		·
- - 80				•			·

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL \$\ \mathbf{T}\$ 1/10/06 .

엺

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409 CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION:

RMW-11

DATE COMPLETED: January 11, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longvear SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS MONITOR INSTALLATION ft BGS ft BGS VALUE NUMBER INTERVA € REC (ź Protective TOPSOIL, with grass and roots Concrete Surface Seal 2.0 CLS SANDY CLAY, trace gravel and silt, stiff, low plasticity, dark brown, slightly moist 2.0 - trace sand, gray at 1.4ft BGS 0.3 - with silt, no gravel at 2.1ft BGS 5 5.5 2.0 some sand and gravel, hard, brown at 3.9ft BGS 2.0 SM SILTY SAND, fine grained, some gravel, well graded, loose, brown, dry 0.8 10 2" Dia. - some silt and clay at 9.1ft BGS Stainless 3 2.0 Steel Casing - trace clay, medium grained at 12,5ft BGS 20 - some clay, reddish brown, moist at 14.0ft 1.0 - 15 BGS 0.9 0.0 0.0 20 - medium to fined grained sand, trace Bentonite cobbles, light brown, slightly moist at 20.0ft 2.0 2.0 25 1.0 2.0 - trace clay, moist at 27.4ft BGS 1.0 30 - saturated at 33.0ft BGS 2.0 1.0 34.8 35 MLS SANDY SILT, soft, moderate plasticity, 1.0 Bentonite gray, very moist Chips 37.1 2.0 SP SAND, medium grained, some gravel, poorly graded, compact, brown, saturated 2.0 - fine to medium grained, very moist at 38.3ft -40 Sand Pack 40.7 2.0 MLS SANDY SILT, trace gravel, soft, low Well Screen plasticity, gray, wet 2.0 45 45.0 END OF BOREHOLE @ 45.0ft BGS WELL DETAILS CRA Screened interval: 39.0 to 44.0ft BGS Length: 5ft 50 Diameter: 2in Slot Size: 10 Material: Factory-slotted Stainless Steel Seal: 55 35.0 to 37.0ft BGS Material: Bentonite Chips Sand Pack: 37.0 to 45.0ft BGS Material: #5 Silica Sand

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL ▼ 1/10/06

Page 1 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-2D

DATE COMPLETED: January 12, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH DEPTH BEDROCK MONITORING WEL STRATIGRAPHIC DESCRIPTION & REMARKS ft BGS ft BGS VALUE (mdd) NUMBER € REC 밁 Steel ź Protective TOPSOIL, with grass and roots 0.5 Concrete Surface Seal MLS SANDY SILT, some clay, trace gravel, 1.4 firm, low plasticity, dark brown, slightly moist 2 - brown at 1.2ft BGS 2.8 2.0 OL ORGANIC SILT, trace sand, firm, 1.8 non-plastic, black, slightly moist 4 - some sand, trace gravel, dark brown at 3.9ft 0.5 1.9 BGS 2.0 1.9 6 6.5 ML SILT, some clay and sand, trace gravel, 2.0 2.0 stiff, low plasticity, brown, slightly moist - trace clay, no gravel at 8.9ft BGS 1.8 10 2" Dia Stainless Steel Casing 0.0 12 0.0 0.0 15.0 SM SILTY SAND, some gravel, loose, well 2.0 graded, brown, dry 16 2.0 2.4 18 - light brown at 18.3ft BGS 1.0 2.1 20 5 1.6 - some gravel, trace cobble at 21.1ft BGS 22 2.0 1.8 24 2.2 1.0 븅 1.0 2.2 26 2.0 2.4 28 - no cobble, compact, very moist at 28.1ft BGS 0.5 1.9 - 30 - wet/saturated at 30.1ft BGS 30.8 2.0 1.8 ML SILT, some sand, trace gravel, firm, low plasticity, gray, moist 32 32.3 SP SAND, medium grained, some gravel, 2.0 2.2 poorly graded, trace silt, compact, brown, 33.5 saturated - 34 ML SILT, some sand, trace clay and gravel, 2.3 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

STATIC WATER LEVEL ₹ 1/11/06

. Page 2 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-2D

DATE COMPLETED: January 12, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELI	<u> </u>		SAM	PLE	
EPTH BGS	STRATIONAPPIIC DESCRIPTION & NEWATING	ft BGS	JEBROOK MOINTONNO NEE	NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
				Z	Z		Z	
.	soft, low plasticity, brown, very moist - firm, moist at 34.0ft BGS				Ш	1.0		2.3
36	- no clay, gray, very moist at 34.8ft BGS					2.0		1.7
	- moist at 37.5ft BGS	•			Ш	2.5		
38						2.0		1.9
}						2.0		,
10	1			_				
				7		2.0		1,0
12					П			
				į		2.0		8.0
14						1.0		0.7
				ł		1.0		0.7
6								
				1		2.0		0.8
18	- dry at 47.5ft BGS				Н			
						1.5		0.8
50	- bedrock, limestone fragments at 49.5ft BGS							
	- fragmented, moderately weathered, oxidized from 50.3 to 53.5ft BGS END OF OVERBURDEN HOLE @ 50.0ft BGS							
52	END OF OVERBURDEN HOLE @ 50.0ft BGS							
54								
·								
56				ŀ				
50								
58								
30								
32								
34								
66								
8								
			1	l	ŀ	1	l	l

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

STATIC WATER LEVEL ₹ 1/11/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-2D

DATE COMPLETED: January 12, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELL	RUN NUMBER	CORE RECOVERY %	RaD %	Water Return (gallons)
- 50 - 52 - 54	- bedrock, limestone fragments at 49.5ft BGS - fragmented, moderately weathered, oxidized from 50.3 to 53.5ft BGS DOLOSTONE, fine grained, well cemented, massive, gray-blue - horizontal fracture, moderately weathered, oxidized at 54.0ft BGS - void, heavily weathered, silt infilled at 54.6ft	50.0	Bentonite Chips	1		20	~140
- 56 - 58	BGS - horizontal fracture, moderately weathered, oxidized at 55.3ft BGS - fragmented, unweathered from 55.4 to 56.1ft BGS		Sand Pack Well Screen	2		58	~90
-60	- horizontal fracture, slightly weathered at 56.9ft BGS - horizontal fracture, moderately weathered at 57.4ft BGS		Weil Screen	3		33	-50
- 62	- horizontal fracture, moderately weathered at 59.0ft BGS END OF BOREHOLE @ 61.0ft BGS	61.0	WELL DETAILS Screened interval: 55.0 to 60.0ft BGS				
-64			Length: 5ft Diameter: 2in Slot Size: 10 Material: Factory-slotted Stainless Steel Seal: 51.0 to 53.0ft BGS Material: Bentonite Chips				
· 68 · 70			Sand Pack: 53.0 to 61.0ft BGS Material: #5 Silica Sand			•	
-72							
-74							
-76			·				
-78							
-80							
-82							
<u> </u> 	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R					ı	

Page 1 of 3

PROJECT NAME: Rexnord

HOLE DESIGNATION:

RMW-3D

PROJECT NUMBER: 030409

DATE COMPLETED: January 13, 2006

CLIENT:

DRILLING METHOD: Rotosonic & HQ Core

LOCATION: Downers Grove, Illinois

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH BEDROCK MONITORING WELL STRATIGRAPHIC DESCRIPTION & REMARKS ft BGS ft BGS (mdd) NUMBER INTERVAL € REC (PID (Steel Protective TOPSOIL, with grass and roots Concrete CL CLAY, sandy, silty, trace gravel, stiff, low plasticity, dark brown, slightly moist 2.0 0.2 Surface Seal 2 - trace cobble at 1.9ft BGS 2.0 1.8 - no cobble at 3.0ft BGS 0.5 1.9 1.9 2 2.0 6 6.3 MLS SANDY SILT, trace clay and gravel, very 2.0 2.3 stiff, low plasticity, dark brown, slightly moist - stiff, brown at 7.8ft BGS 8 2.6 2" Dia. 10 Stainless Steel Casing 2.0 12 2.0 14 0.5 - some gravel, trace cobble, soft, light brown 0.0 at 15.0ft BGS 16 0.0 1.6 - no cobble at 17.5ft BGS 18 1.8 - 20 2.0 22 2.0 - 24 CORP GDT 0.0 26 - trace cobble at 26.5ft BGS 0.0 - no cobble at 28.0ft BGS 28 2.8 0.0 30.0 30 CL-CH CLAY, silty, some sand, trace gravel, soft, high plasticity, gray, very moist 31.9 32 ML SILT, some sand, trace clay and gravel, soft, low plasticity, very moist 2.9 - no clay, non-plastic at 33.9ft BGS -34 4.8 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL ₹ 1/12/06

Page 2 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-3D

DATE COMPLETED: January 13, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DEPTH	OTRATIONADING DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELL			SAMI	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft BGS	BEDROCK MONITORING WELL	NUMBER	INTERVAL	REC (ff)	N' VALUE	PID (ppm)
			V///2 V///2	ž	Z	œ	ż	₫
36	·					1.0		4.8
						2.0		3.5
·38	- firm at 37.8ft BGS - stiff, moist at 38.4ft BGS					2.0		3.9
40	- brown at 39.6ft BGS				Н			
	- some sand, soft, wet at 40.0ft BGS			6		2.0		3.2
42	- firm, moist at 42.2ft BGS							
-44						2.0		4.8
44	- stiff at 45.0ft BGS					1.0		5.1 5.1
46	- 2-inch sand seam, medium to coarse				Н			
.	grained at 46.2ft BGS					2.0		4.9
48	- some clay, soft, low plasticity, light gray, wet at 48.1ft BGS					2.0		5.2
50								
				7		2.0		3.7
- 52	- with sand at 53.0ft BGS					2.0		3.8
- 54	- weathered bedrock, tan, dry at 53.8ft BGS				H	1.0		4.4
						1.0		4.4
- 56						2.0		5.1
- 58	- bedrock and limestone fragments at 57.3ft BGS				Н			
						2.0		4.8
-60	END OF OVERBURDEN HOLE @ 60.0ft BGS							
-62								
-64	•							
-66								
-68								

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

STATIC WATER LEVEL ▼ 1/12/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-3D

DATE COMPLETED: January 13, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLIN	IG CONTRACTOR: Boart Longyear		T				
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELL	RUN NUMBER	CORE RECOVERY %	ROD %	Water Return (gallons)
					REC		ew .
		•					
-62 -64	DOLOSTONE, fine grained, well cemented, massive, gray - horizontal fracture, moderately weathered at 60.4ft BGS - horizontal fracture, heavily weathered at 61.1ft BGS - oxidized, silt infilled at 61.5ft BGS - void, silt/clay infilled from 62.1 to 62.5ft BGS	60.0	Bentonite Chips	. 1		33	~150
66	- void, silt of the control of the c	-	Sand Pack Well Screen	2		78	~130
-68 - -	- horizontal fracture, slightly weathered, oxidized at 68.0ft BGS - horizontal fracture, moderately weathered,			3		50	-75
-70 -72 -74 -76	oxidized at 68.4ft BGS - horizontal fracture, moderately weathered, oxidized at 68.5ft BGS - horizontal fracture, moderately weathered, oxidized at 68.7ft BGS END OF BOREHOLE @ 70.0ft BGS	70.0	WELL DETAILS Screened interval: 64.0 to 69.0ft BGS Length: 5ft Diameter: 2in Stot Size: 10 Material: Factory-slotted Stainless Steel Seal: 60.0 to 62.0ft BGS				·
- 78 - 78	-		Material: Bentonite Chips Sand Pack: 62.0 to 70.0ft BGS Material: #5 Silica Sand				
- 80 -							
82							
84							
6 86 - , 5 - ,							
86 - 88 - 88 - 90 - 90 - 92							
5 - 3 - 92 2	· · · · · · · · · · · · · · · · · · ·						

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL ▼ 1/12/06

Page 1 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-4D

DATE COMPLETED: January 17, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	Į	DEPTH	BEDROCK MONITO	ORING WELL			SAME	_	
BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ft BGS	BEBROOK MONITY	JANO WELL	NUMBER	NTERVAL	REC (ft)	'N' VALUE	1
		- (22)		181 181		_ 	Z		ż	
	GC CLAYEY GRAVEL, medium to coarse grained, poorly graded, dark gray, moist				Concrete Surface Seal	1		2.0		
-	CL CLAV with some project and publics		2.0							Ī
	CL CLAY, silty, some gravel and cobbles, moderate plasticity, medium brown, moist							0.8		,
							Ш			
								0.0		
						2		2.0		
							\mathbb{H}			
								1.0		,
								1.0		
								0.0		
,					2" Dia.					
					Stainless Steel Casing	3		20		2
	- dark gray/brown at 11.0ft BGS					3		2.0		'
2									ļ	
	- medium gray/brown at 13.0ft BGS							0.6	5	2
	- Mediam gray, brown at 15.50, 500									
١								0.0		
							Н			
,	•					4		2.0		. 1
' -	SM/SC GRAVELLY SAND, some silt and clay,	///	16.5							
	fine to coarse grained sand, fine grained gravel to cobbles, well graded, light brown,									
3	dry to moist							2.0		3
Ì						,	Ш			
								0.0		4
)										
						5		2.0		C
,		:::	22.0							
2 -	CL CLAY, gravelly, some silt, low to moderate plasticity, medium brown, moist		22.0					2.0		2
. H	SM/SC GRAVELLY SAND, some silt and clay,	///	23.5							
4	fine to coarse grained sand, fine grained gravel to cobbles, well graded, light brown,							1.5		3

STATIC WATER LEVEL ₹ 1/16/06

Page 2 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-4D

DATE COMPLETED: January 17, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH DEPTH SEDROCK MONITORING WEL STRATIGRAPHIC DESCRIPTION & REMARKS ft BGS ft BGS (mdd) NUMBER € N' VALL REC 8 dry to moist 0.0 3,1 26 0.0 1.3 28 0.0 22 30 30.0 CH CLAY, some silt, trace sand, high plasticity, dark gray, moist 2.0 0.2 32 2.7 34 34.0 SM/SC GRAVELLY SAND, some silt and clay, fine to coarse grained sand, fine grained gravel to cobbles, well graded, light brown, 1.1 dry to moist - wet at 35.0ft BGS 3.8 36 - moist at 36.5ft BGS 10.2 38 1.4 40 CL CLAY, silty, little sand, little gravel, low to moderate plasticity, medium brown, moist 1.5 42 5.8 43.0 ML SILT, clayey, little sand, little gravel, low plasticity, moist to wet 2.2 3.8 10 46 GC/GM SANDY GRAVEL, some silt and clay, 2.7 48 fine to coarse grained gravel, well graded, light gray, moist to wet 4.2 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

STATIC WATER LEVEL 7 1/16/06

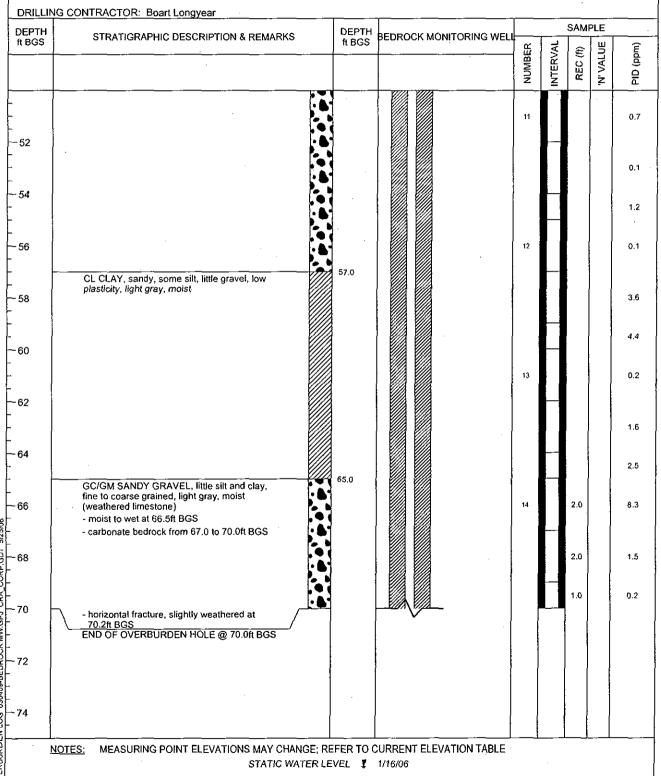
Page 3 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois


HOLE DESIGNATION:

RMW-4D

DATE COMPLETED: January 17, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

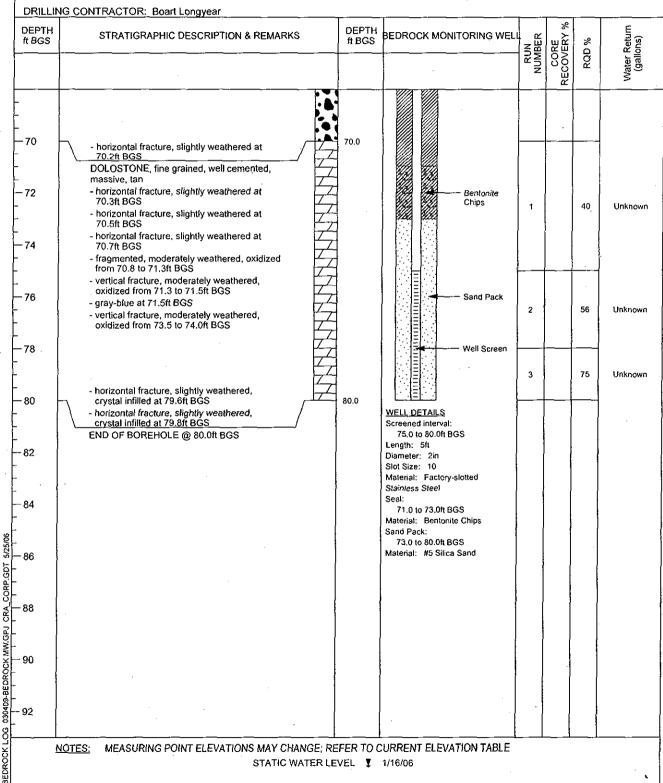
Page 4 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois


HOLE DESIGNATION:

RMW-4D

DATE COMPLETED: January 17, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

Page 1 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

HOLE DESIGNATION: RMW-5D

DATE COMPLETED: January 19, 2006

DRILLING METHOD: Rotosonic & HQ Core

LOCATION: Downers Grove, Illinois FIELD PERSONNEL: M. Groves DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WEL ft BGS ft BGS N' VALUE (mdd) € Protective . 윤 Cover TOPSOIL, with grass and roots 0.6 Concrete Surface Seat CL CLAY, some silt, trace sand and gravel, 2 8.0 stiff, medium plasticity, dark brown, moist -2 2 1.6 3.7 MLS SANDY SILT, trace clay and gravel, firm, - 4 low plasticity, brown, slightly moist 1.8 0.5 1.8 - trace cobble at 6.0ft BGS 6 2.4 8 2.3 - no cobble, moist at 9.5ft BGS 10 Stainless Steel Casing 2.4 2 - slightly moist at 11.4ft BGS - 12 2 1.9 14 1.7 15.0 SM SILTY SAND, medium grained, some 1.7 gravel, poorly graded, loose, brown, slightly - 16 - trace cobble at 15.5ft BGS - no cobble at 16.0ft BGS 1.6 - 18 0.9 20 1.7 22 24 24 2.6

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL ▼ 1/19/06

Page 2 of 4

PROJECT NAME: Rexnord

HOLE DESIGNATION: RMW-5D

PROJECT NUMBER: 030409

DATE COMPLETED: January 19, 2006

CLIENT:

DRILLING METHOD: Rotosonic & HQ Core

LOCATION: Downers Grove, Illinois

FIELD PERSONNEL: M. Groves

)EPTH			DEPTH	BEDROCK MONITORING WE	u—	SAMPLE				
t BGS	STRATIGRAFFIIG DESCRIFTION & REMARKS		ft BGS		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	
26								1	1.4	
28	CL CLAY, some silt and sand, trace gravel, firm, medium plasticity, brown, moist - no sand or gravel, trace silt, high plasticity, gray at 28.0ft BGS		27.1			_		2	1.	
30										
32	SP SAND, medium grained, some gravel, poorly graded, compact, brown, wet		31.0		5			2	1.	
	CL CLAY, some sand, trace silt, soft, high plasticity, gray, very moist		32.3					2	0.	
34	- with sand at 35.0ft BGS							1	1.	
36	SM SILTY SAND, medium grained, some		36.3					1	1.	
38	gravel, trace clay, compact, brown, slightly moist							2	1.	
10	. CL-ML SILTY CLAY, trace sand, soft, high plasticity, gray moist		39.5		6			2	2.	
12	SP SAND, compact, fine to medium grained, poorly graded, brown, wet - with silt at 42.3ft BGS		41.3	T T T T T T T T T T T T T T T T T T T				-		
	MLS SANDY SILT, some clay, trace gravel, soft, low plasticity, gray, moist		42.7					2	2.	
14	- firm at 44.0ft BGS							1	2.	
16	SP SAND, medium grained, with gravel, poorly graded, compact, brown, wet		46.0					2	2. 1.	
18	MLS SANDY SILT, trace gravel, firm, low plasticity, brown, moist - stiff at 48.7ft BGS		47.5					2	1.	

Page 3 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

HOLE DESIGNATION: RMW-5D

DATE COMPLETED: January 19, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

LOCATION: Downers Grove, Illinois FIELD PERSONNEL: M. Groves									
DRILLING	CONTRACTOR: Boart Longyear		·		Ι —		SAM		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		DEPTH ft BGS	BEDROCK MONITORING WELL	-K				(E
					NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	SM SILTY SAND, medium grained, some gravel, well graded, compact, brown, wet - with gravel at 51.0ft BGS		50.5		7			2	1.9
52	- some gravel at 52.0ft BGS ML SILT, some sand, trace gravel, firm, low plasticity, gray, moist		62.5					2	2.0
54) 1						1	2.4
56	- very moist at 55.0ft BGS							1	2.4
	SP SAND, medium grained, some silt and	-	57.5					2	2.6
58	gravel, poorly graded, compact, gray, wet (weathered bedrock?)							2	0.9
60					8			2	2.4
-62									2.1
ļ	- bedrock - limestone fragments at 63.0ft BGS							2	1.9
-64	END OF OVERBURDEN HOLE @ 65.0ft BGS							1	2.3
66	<u> </u>								
-68									
							İ		
-70									
-72									
-74									

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ 1/19/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 4 of 4

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-5D

DATE COMPLETED: January 19, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WEL	RUN	CORE RECOVERY %	RQD %	Water Return (gallons)
66	DOLOSTONE, fine grained, fragmented, weathered, well cemented, massive, blue-gray - horizontal fracture, moderately weathered at 65.6ft BGS	65.0			R.		<u> </u>
68	- horizontal fracture, moderately weathered at 66.2ft BGS - fragmented, unweathered at 67.3ft BGS - horizontal fracture, moderately weathered, oxidized at 67.8ft BGS - horizontal fracture, crystal infilled at 68.3ft BGS		Bentonite Chips	1		18	~75
70 72	- horizontal fracture, moderately weathered at 69.3ft BGS - void, crystal infilled at 69.6ft BGS - horizontal fracture, slightly weathered at 70.0ft BGS - horizontal fracture, highly weathered at		Sand Pack				
74	71.2ft BGS - horizontal fracture, highly weathered at 72.3ft BGS - medium grained at 73.0ft BGS - horizontal fracture, moderately weathered at 73.2ft BGS	7 75.0	Well Screen	2		38	-100
76	- horizontal fracture, moderately weathered at 73.6ft BGS - horizontal fracture, moderately weathered at 73.8ft BGS - horizontal fracture, moderately weathered at 74.1ft BGS		WELL DETAILS Screened interval: 70.0 to 75.0ft BGS Length: 5ft Diameter: 2in Slot Size: 10				
78	- horizontal fracture, highly weathered at 74.3ft BGS - horizontal fracture, highly weathered at 74.7ft BGS END OF BOREHOLE @ 75.0ft BGS		Material: Factory-slotted Stainless Steel Seal: 66.0 to 68.0ft BGS Material: Bentonite Chips				
32			Sand Pack: 68.0 to 75.0ft BGS Material: #5 Silica Sand	İ			
34							
36							
38					Ì		

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ₹ 1/19/06

Page 1 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

뎡

GP.

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION:

RMW-6D

DATE COMPLETED: January 19, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WELL ft BGS ft BGS PID (ppm) 'N' VALUE NUMBER REC TOPSOIL, with grass and roots 0.5 Concrete 2 0 CL-ML SILTY CLAY, some sand, trace gravel, Surface Seal stiff, low plasticity, dark brown, slightly moist 2 - brown at 1.8ft BGS 1.8 0.2 0 0.5 - moist at 4.8ft BGS 2 0.5 - silty, sandy clay at 5.8ft BGS 6 2 0.9 8 - firm at 8.5ft BGS 0.7 0.7 10 - soft, very moist at 10.0ft BGS Stainless Steel Casing 3 2 0.7 12 2 0.9 - some gravel, stiff, slightly moist at 13.3ft 14 1 1.2 1.2 2 - sandy clay, trace gravel, very stiff at 15.5ft 16 BGS 2 0.4 18 1 0.7 20 21.0 2 1.9 CL CLAY, trace sand and silt, firm, medium 22 plasticity, brown, moist 1.8 - high plasticity, gray at 23.0ft BGS 24 1.8 1.8 26 2 2.3 -28 2 1.9 30 2 1.7 - some silt at 31.8ft BGS 32 2 1.9 - 34 2.4 35.0 ML SILT, trace clay, sand, and gravel, stiff, 2.4 - 36 low plasticity, gray, moist 2.1 38 1.6 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

STATIC WATER LEVEL \$\ 1/18/06

Page 2 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION:

RMW-6D

DATE COMPLETED: January 19, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WELL ft BGS ft BGS PID (ppm) N' VALUE € REC 2 1.2 42 43.0 2 1.5 SP SAND, medium grained, some gravel, trace cobble, poorly graded, compact, light 44 44.2 1.4 brown, wet ML SILT, some sand, trace gravel, firm, low 1.4 - 46 plasticity, gray, moist 2 1,7 48 2 1.6 50 50.0 SP SAND, fine to medium grained, trace gravel, poorly graded, compact, gray, wet 2 1.1 52 2 1.3 54 54.1 ML SILT, some sand, trace gravel, firm, low 1.7 plasticity, gray, moist 1.7 - some gravel, soft, very moist at 55.0ft BGS 56 56.3 SP SAND, medium grained, some silt and gravel, poorly graded, compact, gray, wet (weathered bedrock?) 2 1.6 58 2 1.1 60 2 1.1 62 1.3 64 0.6 END OF OVERBURDEN HOLE @ 65.0ft BGS - 66 -68 70 -72 - 74 - 76 -78 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

STATIC WATER LEVEL ▼ 1/18/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-6D

DATE COMPLETED: January 19, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELI	RUN	CORE RECOVERY %	Rap %	Water Return (gallons)
				, _	RE		*
66 68	DOLOSTONE, fine grained, well cemented, massive, gray - horizontal fracture, moderately weathered, oxidized at 65.9ft BGS - fragmented, slightly weathered from 66.0 to 68.8ft BGS	65.0	Bentonite Chips	1		20	Unknown
70	- horizontal fracture, moderately weathered, oxidized at 68.9ft BGS - horizontal fracture, moderately weathered,		Sand Pack	· ·			-
72	oxidized at 69.7ft BGS - horizontal fracture, moderately weathered, oxidized at 70.2ft BGS - horizontal fracture, moderately weathered,		Well Screen	2		58	Unknown
74	oxidized at 73.5ft BGS	75.0	WELL DETAILS	<u> </u>			
76	END OF BOREHOLE @ 75.0ft BGS		Screened interval: 69.0 to 74.0ft BGS Length: 5ft				
78			Diameter: 2in Slot Size: 10 Material: Factory-slotted				
80			Stainless Steel Seal: 65.0 to 67.0ft BGS				
82		: :	Material: Bentonite Chips Sand Pack: 67.0 to 75.0ft BGS Material: #5 Silica Sand		i		
86							i
88] 			
90							
92							
94							
96							
100					,		
102							

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ▼ 1/18/06

Page 1 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-7D

DATÉ COMPLETED: January 18, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLING CONTRACTOR: Boart Longyear SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS BEDROCK MONITORING WEL ft BGS ft BGS (mdd) 'N' VALUE NTERVAL € REC (PIO TOPSOIL, with grass and roots 0.4 Concrete Surface Seal CL CLAY, some silt and sand, stiff, low 2 1.1 plasticity, dark brown, slightly moist - black at 1.1ft BGS -2 0.8 - brown at 3.4ft BGS 4.0 - 4 MLS SANDY SILT, trace clay, hard, low 1.1 plasticity, brown, slightly moist 2 1.1 2 6 2 1.3 0.5 1.2 2" Dia. 10.0 10 Stainless Steel Casing SP SAND, fine grained, some silt, poorly graded, loose, dry, brown 3 2 0.8 12 2 1.0 1 1.4 2 1.4 - with silt, trace gravel at 16.0ft BGS - 16 2 1,1 18 - trace cobble, moist at 18.8ft BGS 0.3 1.4 - 20 2 0.7 G -22 22.5 MLS SANDY SILT, trace gravel, stiff, low 2 1.7 plasticity, brown, moist 24 1.4 1.4 - 26 2 1.4 28 28.1 SP SAND, medium grained, some gravel and silt, poorly graded, compact, brown, moist 0.5 1.3 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

Page 2 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-7D

DATE COMPLETED: January 18, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	-	DEPTH	BEDROCK MONITORING WEI	<u> </u>		SAM	PLE	
BGS			ft BGS		NUMBER	INTERVAL	REC (#)	'N' VALUE	(max) Ala
					6			2	1.
32	ML SILT, some sand and gravel, soft, low plasticity, reddish brown, very moist		31.8					2	1.
34	- trace sand and gravel, firm, gray, moist at 34.3ft BGS							1	1.
36	•							1	1.5
38	SP SAND, some silt and gravel, compact, medium grained, poorly graded, brown,		37.8					2	2.
10	slightly moist CL CLAY, some sand, trace gravel and silt, stiff, low plasticity, gray, slightly moist		39.1					2	2.
	- with gravel, trace cobble at 40.1ft BGS - with silt, trace gravel, no cobble at 41.1ft BGS				7			2	1.
12	MLS SANDY SILT, trace gravel, stiff, low plasticity, grayish brown, moist		42.5					2	12
14	SP SAND, some clay and gravel, compact,		44.8					1	0.
6	medium grained, poorly graded, brown, slightly moist							1 2	0. 2.
8 –	CL CLAY, trace sand, gravel, and silt, very	- ////	48.1			H			
60	stiff, low plasticity, gray, slightly moist							2	1.
62	weathered bedrock, tan, dry from 51.0 to 53.5ft BGS				8			2	2.4
	- bedrock - limestone fragments at 53.5ft BGS						.) 	2	1.8
4	END OF OVERBURDEN HOLE @ 55.0ft BGS							1	1.3
6									
8									

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: Rexnord

PROJECT NUMBER: 030409

CLIENT:

BEDROCK LOG 030409-BEDROCK MW.GPJ CRA_CORP.GDT 5/25/06

LOCATION: Downers Grove, Illinois

HOLE DESIGNATION: RMW-7D

DATE COMPLETED: January 18, 2006

DRILLING METHOD: Rotosonic & HQ Core

FIELD PERSONNEL: M. Groves

DRILLII	NG CONTRACTOR: Boart Longyear				r	,	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	BEDROCK MONITORING WELI	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (gallons)
1				_	, E		N N
-							
Ė	DOLOSTONE, fine grained, well cemented,	55.0					
- 56	massive, blue-gray - horizontal fracture, highly weathered,						•
	oxidized at 56.2ft BGS		Bentonite				
L	horizontal fracture, moderately weathered, oxidized at 56.6ft BGS		Chips	1		17	Unknown
- 58 -	- horizontal fracture, highly weathered,						
Ė	oxidized at 57.0ft BGS - horizontal fracture, highly weathered,						
-60	oxidized at 57.5ft BGS						
_	- void, crystal/pyrite infilled at 57.7ft BGS - angular fracture (45 degrees), moderately		Sand Pack				
<u> </u>	weathered, oxidized at 58.1ft BGS						
- 62	- fragmented, unweathered from 58.5 to 59.7ft BGS		Sand Pack	2		32	Unknown
F	- horizontal fracture, moderately weathered, oxidized at 60.8ft BGS		Well Screen			1	
-64	- void, crystal infilled at 61.9ft BGS					J	
-	- horizontal fracture, slightly weathered at	65.0					
} } 	62.1ft BGS - horizontal fracture, moderately weathered,		WELL DETAILS			1	
66 	calcite infilled at 63.9ft BGS END OF BOREHOLE @ 65.0ft BGS		Screened interval: 60.0 to 65.0ft BGS	ļ		ļ	
L	END OF BOREHOLD W 63,011 BG3		Length: 5ft Diameter: 2in			ĺ	
68	·		Slot Size: 10	ļ		ļ	
<u>-</u>			Material: Factory-slotted Stainless Steel			i	
			Seal:	l		l	
─70 -			56.0 to 58.0ft BGS Material: Bentonite Chips	Ì		1	
L			Sand Pack: 58.0 to 65.0ft BGS			ĺ	
72			Material: #5 Silica Sand]		ļ	
- -						l	•
·			i	ſ	- (1	
-74 -				,]	J	
-				1			•
- 7 6			}	ł	1	1	
<u> </u>	·						
- 78				ĺ	. [ĺ	
- 10			·	}	Į	ļ	
<u>L</u>				1		1	
- 80					ł		
[i	ļ		
- 82				ĺ	ĺ	[
02			. 1	1	ŀ		
-							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	EER TO	LIBRENT ELEVATION TARI E				
}	NULLO WILLOUTHING FORT LEVATIONS WAT STANGE, NL		SOUTH PERMITTING				

APPENDIX B

LABORATORY ANALYTICAL REPORTS

STL North Canton 4101 Shuffel Drive NW North Canton, OH 44720

Tel: 330 497 9396 Fax: 330 497 0772 www.stl-inc.com

ANALYTICAL REPORT

PROJECT NO. 30409

REXNORD, DOWNERS GROVE

Lot #: A6B160155 SDG #: 6B16155

Julie Czech

Conestoga-Rovers & Associates 8615 W. Bryn Mawr Chicago, IL 60631

SEVERN TRENT LABORATORIES, INC.

Amy L. McCormick Project Manager

March 2, 2006

SAMPLE SUMMARY

6B16155 : A6B160155

			SAMPLED	SAMP
WO #	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
HXKAA	001	GW-021306-DS-01	02/13/06	
HXKAE	002	GW-021306-CA-02	02/13/06	
HXKAF	003	GW-021306-CA-03	. 02/13/06	16:40
HXKAH	004	GW-021306-CA-04	02/13/06	17:10
HXKAJ	005	GW-021406-CA-05	02/14/06	08:45
HXKAK	006	GW-021406-CA-06	02/14/06	10:03
HXKAL	007	GW-021406-CA-10	02/14/06	11:07
HXKAP	008	GW-021406-CA-07	02/14/06	14:12
HXKAR	009	GW-021406-CA-08	02/14/06	16:02
HXKAT	010	GW-021406-CA-09	02/14/06	17:15
HXKAW	011	GW-021506-CA-11	02/15/06	10:17
HXKAX	012	TRIP-021506-01	02/15/06	•

NOTE(S):

⁻ The analytical results of the samples listed above are presented on the following pages.

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results.

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory.

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: GW-021306-DS-01

GC/MS Volatiles

Lot-Sample #: A6B160155-001 Wo	ork Order #: HXKAA1AA	Matrix: WG
--------------------------------	-----------------------	------------

Date Sampled...: 02/13/06 13:18 Date Received..: 02/16/06

Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

•		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	0.57 J	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	<u></u>	
Dibromofluoromethane	112	(73 - 12)	2)	
1,2-Dichloroethane-d4	125	(61 - 12	8)	
Toluene-d8	98	(76 - 11	0)	
4-Bromofluorobenzene	87	(74 - 11	6)	

NOTE(S):

J Estimated result, Result is less than RL.

Client Sample ID: GW-021306-CA-02

GC/MS Volatiles

Lot-Sample #...: A6B160155-002 Work Order #...: HXKAE1AA Matrix...... WG

Date Sampled...: 02/13/06 16:40 Date Received..: 02/16/06 Prep Date.....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Method....: SW846 8260B

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	${\tt ug/L}$
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	${\tt ug/L}$
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.52 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
•	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	112	(73 - 12	2)
1,2-Dichloroethane-d4	124	(61 - 12	8)
Toluene-d8	98	(76 - 11	0)
4-Bromofluorobenzene	85	(74 - 11)	6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-021306-CA-03

GC/MS Volatiles

Lot-Sample #: A6B160155-003	Work Order #: HXKAF1AA	Matrix WG
-----------------------------	------------------------	-----------

Date Sampled...: 02/13/06 16:40 Date Received..: 02/16/06 Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ИD	1.0	ug/L
1,1-Dichloroethane	ND	1.0	${\tt ug/L}$
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND ·	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.50 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	112	(73 - 12	?2)
1,2-Dichloroethane-d4	124	(61 - 12	28)
Toluene-d8	99	(76 - 11	.0)
4-Bromofluorobenzene	85	(74 - 11	.6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-021306-CA-04

GC/MS Volatiles

Lot-Sample #...: A6B160155-004 Work Order #...: HXKAH1AA Matrix..... WG

Date Sampled...: 02/13/06 17:10 Date Received..: 02/16/06 Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Directon recept. 1	~~~ · · · · · · · · · · · · · · · · · ·		-
	Method	: SW846 82	260B
	•	REPORTIN	NG
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND .	1.0	ug/L
1.1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	${\tt ug/L}$
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	(
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	113	(73 - 12	22)
1,2-Dichloroethane-d4	125	(61 - 12	28)
Toluene-d8	101	(76 - 11	10)
4-Bromofluorobenzene	87	(74 - 11)	16)

Client Sample ID: GW-021406-CA-05

GC/MS Volatiles

Lot-Sample #...: A6B160155-005 Work Order #...: HXKAJ1AA Matrix....: WG

Date Sampled...: 02/14/06 08:45 Date Received..: 02/16/06 Analysis Date..: 02/20/06

Prep Date....: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1	Initial Wgt/Vol			Wgt/Vol: 5 mI
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND	1,0	ug/L	_
Chloromethane	ир	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/Ĺ	
1,2-Dichloroethane	ИD	1.0	ug/L	
1,1-Dichloroethene	ИD	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND.	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND .	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Dibromofluoromethane	112	(73 - 122)		
1,2-Dichloroethane-d4	124	(61 - 128)		
Toluene-d8	99	(76 - 110)		
4-Bromofluorobenzene	88	(74 - 116)		

Client Sample ID: GW-021406-CA-06

GC/MS Volatiles

Lot-Sample #: A6B160155-00	Work Order #: HXKAK1AA	Matrix WG
----------------------------	------------------------	-----------

Date Sampled...: 02/14/06 10:03 Date Received..: 02/16/06

Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method.....: SW846 8260B

*		•	
•		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	0.68 J	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.31 J	1.0	ug/L
1,1,1-Trichloroethane	1.7	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	0.86 J	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	,
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	112	(73 - 12	2)
1,2-Dichloroethane-d4	125	(61 - 12	8)
Toluene-d8	98	{76 - 11	0)
4-Bromofluorobenzene	83	(74 - 11)	6)

NOTE(S):

J. Estimated result. Result is fess than RL.

Client Sample ID: GW-021406-CA-10

GC/MS Volatiles

Lot-Sample #...: A6B160155-007 Work Order #...: HXKAL1AA Matrix...... WG

Date Sampled...: 02/14/06 11:07 Date Received..: 02/16/06 Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

	Method	: SW846 82	260B
		REPORTIN	NG
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND .	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	· ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	. ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS_	
Dibromofluoromethane	113	(73 - 12	(2)
1,2-Dichloroethane-d4	126	(61 - 12	(8)
Toluene-d8	99	(76 - 11	.0)
4-Bromofluorobenzene	84	(74 - 11	.6)

Client Sample ID: GW-021406-CA-07

GC/MS Volatiles

Lot-Sample #...: A6B160155-008 Work Order #...: HXKAP1AA Matrix..... WG

Date Sampled...: 02/14/06 14:12 Date Received..: 02/16/06 Analysis Date..: 02/20/06 Prep Date....: 02/20/06

Prep Batch #...: 6052063

Initial Wot/Vol: 5 mL Final Wqt/Vol..: 5 mL Dilution Factor: 1

Dilution Factor: 1	Method		260B	шш
		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0.	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	${\tt ug/L}$	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
•	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	113	(73 - 12)	(2)	
1,2-Dichloroethane-d4	124	(61 - 12	(8)	
Toluene-d8	99	(76 - 11	.0)	
4-Bromofluorobenzene	87	(74 - 11)	.6)	

Client Sample ID: GW-021406-CA-08

GC/MS Volatiles

Lot-Sample #...: A6B160155-009 Work Order #...: HXKAR1AA Matrix....: WG

Date Sampled...: 02/14/06 16:02 Date Received..: 02/16/06 Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Final Wgt/Vol..: 5 mL Initial Wgt/Vol: 5 mL

	Method	: SW846 82	SW846 8260B	
		REPORTIN	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND .	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	114	(73 - 12	2)	
1,2-Dichloroethane-d4	127	(61 - 12	8)	
Toluene-d8	98	(76 - 11	0)	
4-Bromofluorobenzene	83	(74 - 11	6)	

Client Sample ID: GW-021406-CA-09

GC/MS Volatiles

Lot-Sample #...: A6B160155-010 Work Order #...: HXKAT1AA Matrix...... WG

Date Sampled...: 02/14/06 17:15 Date Received..: 02/16/06 Prep Date.....: 02/20/06 Analysis Date..: 02/20/06

Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

DITUCTOM LUCCOL. 1	Initiating C/	· OI. 5 III	111101	ge, tori. o m	_
	Method	: SW846 82	60B		
		REPORTIN	G .		
PARAMETER	RESULT	LIMIT	UNITS		
Chloroethane	ND	1.0	ug/L		
Chloromethane	ND	1.0	ug/L		
1,1-Dichloroethane	ND	1.0	ug/L		
1,2-Dichloroethane	ND	1.0	ug/L		
1,1-Dichloroethene	ND	1.0	ug/L		
cis-1,2-Dichloroethene	ND	1.0	ug/L		
trans-1,2-Dichloroethene	ND .	1.0	ug/L		
Methylene chloride	ND	1.0	ug/L		
Tetrachloroethene	ND	1.0	ug/L		
1,1,1-Trichloroethane	ND	1.0	ug/L		
1,1,2-Trichloroethane	ND	1.0	ug/L		
Trichloroethene	ND	1.0	ug/L		
Vinyl chloride	ND	1.0	ug/L		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	112	(73 - 123	2)		
1,2-Dichloroethane-d4	122	(61 - 12)	3)		
Toluene-d8	99	(76 - 11)	0)		
4-Bromofluorobenzene	86	(74 - 110)	6)		

Client Sample ID: GW-021506-CA-11

GC/MS Volatiles

Lot-Sample #...: A6B160155-011 Work Order #...: HXKAW1AA Matrix.....: WG

Date Sampled...: 02/15/06 10:17 Date Received..: 02/16/06 Prep Date....: 02/20/06 Analysis Date..: 02/20/06

Prep Date....: 02/20/06
Prep Batch #...: 6052063

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260E

	Method: SW846 8260B			
PARAMETER	RESULT	REPORTING LIMIT	UNITS	
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Dibromofluoromethane	113	(73 - 122)	-	
1,2-Dichloroethane-d4	124	(61 - 128)		
Toluene-d8	99	(76 - 110)		
4-Bromofluorobenzene	8 4	(74 - 116)		

Client Sample ID: TRIP-021506-01

GC/MS Volatiles

Lot-Sample #: A6B160155-0	12 Work Order #: HYVAYIAA	Martiv
Date Sampled: 02/15/06	Date Received: 02/16/06	
Prep Date: 02/20/06	Analysis Date: 02/20/06	
Prep Batch #: 6052063	•	
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL

Method....: SW846 8260B

		•	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	${\tt ug/L}$
Methylene chloride	0.40 J	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	$\mathtt{ug/L}$
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	114	(73 - 122)	_
1,2-Dichloroethane-d4	125	(61 - 128)	1
Toluene-d8	100	(76 - 110)	}
4-Bromofluorobenzene	85	(74 - 116)	}

NOTE(S):

J Estimated result. Result is less than RL.

8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone (773)380-6421 fax				SHIPPED TO (Laboratory Na REFERENCE N	me):	١.	T	FIXO	North DJECT N				ers Gr	sove	
	CHA	IN-OF-	CUSTODY RE			101		40				, 13 / E	<u>recor</u>	030	7
SAMPLER'S PRINTED SIGNATURE: SI				SHELLD		No. OF CONTAINERS	PARAMETERS				REMARKS				
SEQ. No.	DATE	TIME		LE IDENTIFIC	ATION No.		MPLE TRIX	+	M	<i>3</i> //	//				
	2-130	1318	6W-0213	306-05-01	_,	<u> L84</u>	TER				·	 			Avestions
		1640	662-0213	06-03-02				3]	CALL	C +10 ==
		140		53_			 	1_2				 	-	المحادث	50+ter 1-380-9933
	V	1710		<u> </u>			 	13					 	1/9	F380-773.3
	2-14-06	845	(24)-UZ14T	06-CA-05			 	13				 - - 	 		
		10:03		- 06				13	\vdash			. . 	 		
<u>.</u>	1107 -10,1			-10, m	M5/M5D		 	17		\+		+	 		
		1412		-57			╃—	<u> ₹</u>				 	 	} -	
		1602		-08			-	13				-}}-	 		
	V	1715	T V V	V~09			 . -	1.3				 	 	 	
	2-15-0	1017	GW-021	506-CA-11			Ψ_{-}	+	1					 	
	2750		TRIP-	021506-	01			3	+			 - -	 	 	
			<u> </u>		<u> </u>					 - - 		-} }	} -	 	
			<u> </u>		<u> </u>]	- }- -}		- -	 	 	<u> </u>
		<u> </u>	<u> </u>					5/2	╃					<u> </u>	
				MBER OF CONT											DATE:
RELI	NQUISHE	BY:	30000		DATE: 2		S R	ECEIVE	DBY:					•	TIME:
1		_8	· 40	<u> </u>	TIME: /	200		<u>2</u>							DATE:
	NQUISHE	DBY:			DATE:			ECEIVE	D BY:						TIME:
2	TIME:								DATE:						
	RELINQUISHED BY: DATE:				RECEIVED BY: Output Date: TIME:				TIME:						
3					1 1111-										
ME	THOD O	F SHIP	MENT: FE	DX				AIR	BILL						
Ye	White -Fully Executed Copy Yellow -Receiving Laboratory Copy SAMPLE TEAM: AUTOM S				<u> </u>			RECEIVED FOR LABORATORY BY:				12745			
Pir	ik Idenrod		per Copy pler Copy		SHELLI				i	DATE:	/16/	06 TIM	E: 093	<u> </u>	

STL North Canton 4101 Shuffel Drive NW North Canton, OH 44720

Tel: 330 497 9396 Fax: 330 497 0772 www.stl-inc.com

ANALYTICAL REPORT

PROJECT NO. 30409

REXNORD SDG #: 6C08316

Julie Czech

Conestoga-Rovers & Associates 8615 W. Bryn Mawr Chicago, IL 60631

SEVERN TRENT LABORATORIES, INC.

Amy L. McCormick Project Manager

March 22, 2006

SAMPLE SUMMARY

6C08316 : A6C080316

			SAMPLED	SAMP
WO #	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
·		•		
H0V70	001	GW-030606-JK-001	03/06/06	15:20
H0V82	002	GW-030606-JK-003	03/06/06	16:20
H0A86	003	GW-030706-JK-005	03/07/06	08:50
H0V89	004	GW-030706-JK-006	03/07/06	10:10
H0V9C	005	GW-030706-JK-007	03/07/06	11:05
HOV9E	006	GW-030706-JK-008	03/07/06	11:10
H0V9G	007	GW-030706-JK-009	03/07/06	11:50
HOV9J	008	GW-030706-JK-010	03/07/06	12:45
HOV9M	009	GW-030606-JK-02	03/06/06	15:30
HOV9R	010	GW-030606-JK-04	03/06/06	16:40
HOV9X	011	GW-030706-JK-11	03/07/06	10:05
H0V90	012	GW-030706-JK-12	03/07/06	11:15
H0V92	013	GW-030706-JK-13	03/07/06	12:55
H0V93	014	GW-030706-JK-14	03/07/06	13:40
H0V95	015	GW-030706-JK-15	03/07/06	13:45
H0V96	016	GW-030706-JK-16	03/07/06	14:40
H0V97	017	GW-030706-JK-17	03/07/06	15:00
H0V98	018	TRIP BLANKS	03/07/06	
				•

NOTE(S):

(Continued on next page)

⁻ The analytical results of the samples listed above are presented on the following pages.

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results.

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory.

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SAMPLE SUMMARY

6C08316 : A6C100195

WO # 5	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
ногрн	001	GW-030806-JK-21	03/08/06	5 10:40
H02PV	002	GW-030806-JK-22	03/08/06	11:40
H02PX	003	GW-030806-JK-23	03/08/06	11:45
H02P2	004	GW-030806-JK-24	03/08/06	12:30
H02P6	005	GW-030806-JK-25	03/08/06	13:35
H02P8	006	GW-030806-JK-18	03/08/06	09:30
H02OE	007	GW-030806-JK-19	03/08/06	11:00
H02QJ	008	GW-030806-JK-20	03/08/06	11:50
H02QM	009	GW-030806-JK-26	03/08/06	13:30
H02QR	010	GW-030806-JK-27	03/08/06	13:35
H02OT	011	GW-030806-JK-28	03/08/06	14:30
H02OV	012	GW-030906-JK-30	03/09/06	10:30
H02QV	013	TRIP BLANK	03/09/06	5
2				

NOTE(S):

⁻ The analytical results of the samples listed above are presented on the following pages.

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results.

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory.

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: GW-030606-JK-001

GC/MS Volatiles

Lot-Sample #...: A6C080316-001 Work Order #...: H0V701AA Matrix....: WG

Date Sampled...: 03/06/06 15:20 Date Received..: 03/08/06 Analysis Date..: 03/13/06 Prep Date....: 03/13/06

Prep Batch #...: 6073107

Final Wgt/Vol..: 5 mL Dilution Factor: 1 Initial Wqt/Vol: 5 mL

Dilucton Factor: 1	Method			
		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	_
Chloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}	
Chloromethane	ND .	1.0	\mathtt{ug}/\mathtt{L}	
1,1-Dichloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}	
1,2-Dichloroethane	ND	1.0	ug/L	•
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	$\mathtt{ug/L}$	
1,1,1-Trichloroethane	ND	1.0	${\tt ug/L}$	
1,1,2-Trichloroethane	ND	1.0	ug/L	*
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY	-	
SURROGATE	RECOVERY	LIMITS		•
Dibromofluoromethane	103	(73 - 12	(2)	
1,2-Dichloroethane-d4	113	(61 - 12	(8)	
Toluene-d8	99	(76 - 11	.0)	
4-Bromofluorobenzene	98	(74 - 11	.6)	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	103	(73 - 122)
1,2-Dichloroethane-d4	113	(61 - 128)
Toluene-d8	99	(76 - 110)
4-Bromofluorobenzene	98	(74 - 116)

Client Sample ID: GW-030606-JK-003

GC/MS Volatiles

Lot-Sample #: A6C080316-002	Work Order #: HOV821AA	Matrix WG
BOC Bumbie "		•

Date Sampled...: 03/06/06 16:20 Date Received..: 03/08/06 Analysis Date..: 03/13/06

Prep Date....: 03/13/06

Prep Batch #...: 6073107

Final Wgt/Vol..: 5 mL Initial Wgt/Vol: 5 mL Dilution Factor: 1

Method.....: SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0.	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND ·	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1.1-Dichloroethene	. ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.42 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	${\tt ug/L}$
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 12	(2)
1,2-Dichloroethane-d4	114	(61 - 12	8)
Toluene-d8	100	(76 - 11	0)
4-Bromofluorobenzene	99	(74 - 11	6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-005

GC/MS Volatiles

Lot-Sample #...: A6C080316-003 Work Order #...: H0V861AA Matrix..... WG

Date Sampled...: 03/07/06 08:50 Date Received..: 03/08/06 Analysis Date..: 03/13/06

Prep Date....: 03/13/06

Prep Batch #...: 6073107

Final Wgt/Vol..: 5 mL Initial Wgt/Vol: 5 mL Dilution Factor: 1

Method.....: SW846 8260B

		REPORTIN	.G
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	$\mathtt{ug/L}$
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.33 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	108	(73 - 12	(2)
1,2-Dichloroethane-d4	114	(61 - 12	18)
Toluene-d8	99	(76 - 11	0)
4-Bromofluorobenzene	99	(74 - 11)	.6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-006

GC/MS Volatiles .

Lot-Sample #...: A6C080316-004 Work Order #...: H0V891AA Matrix....: WG

Date Sampled...: 03/07/06 10:10 Date Received..: 03/08/06 Analysis Date..: 03/13/06

Prep Date....: 03/13/06

Prep Batch #...: 6073107

Final Wgt/Vol..: 5 mL Dilution Factor: 1 Initial Wgt/Vol: 5 mL

Method.....: SW846 8260B

	ncenou		
		REPORTING	;
PARAMETER	RESULT	LIMIT	UNITS _
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND .	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND .	1.0	${\tt ug/L}$
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND .	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 122	:)
1,2-Dichloroethane-d4	113	(61 - 128	·) ···
Toluene-d8	100	(76 - 110)
4-Bromofluorobenzene	97	(74 - 116	i)

Client Sample ID: GW-030706-JK-007

GC/MS Volatiles

Lot-Sample #: A6C080316-005	Work Order #: HOV9C1AA	Matrix WG

Date Sampled...: 03/07/06 11:05 Date Received..: 03/08/06 Prep Date.....: 03/14/06 Analysis Date..: 03/14/06

Prep Batch #...: 6074144

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

PARAMETER RESULT Chloroethane ND Chloromethane ND 1,1-Dichloroethane 0.66 J 1,2-Dichloroethane ND	LIMIT 1.0 1.0	UNITS ug/L ug/L
Chloromethane ND 1,1-Dichloroethane 0.66 J 1,2-Dichloroethane ND	1.0	ug/L
1,1-Dichloroethane 0.66 J 1,2-Dichloroethane ND	. 1.0	-
1,2-Dichloroethane ND		11 ~ /T
1,2 210111111111111111111111111111111111		nd\r
	1.0	ug/L
cis-1,2-Dichloroethene ND	1.0	ug/L
trans-1,2-Dichloroethene ND	1.0	ug/L
1,1-Dichloroethene ND	1.0	ug/L
Methylene chloride ND	1.0	${\tt ug/L}$
Tetrachloroethene 0.22 J	1.0	ug/L
1,1,1-Trichloroethane 1.3	1.0	ug/L
1,1,2-Trichloroethane ND	1.0	ug/L
Trichloroethene 0.71 J	1.0	ug/L
Vinyl chloride NĎ	1.0	ug/L
PERCENT	RECOVERY	
SURROGATE RECOVERY	LIMITS	
Dibromofluoromethane 101	(73 - 12)	2)
1,2-Dichloroethane-d4 110	(61 - 12	8)
Toluene-d8 98	(76 - 11	0)
4-Bromofluorobenzene 99	(74 - 11	6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-008

GC/MS Volatiles

		Work Order #:		Matrix	wG
Date Sampled:	03/07/06 11:10	Date Received:	03/08/06		
Prep Date:	03/14/06	Analysis Date:	03/14/06		
Prep Batch #:	6074144				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol:	5 mL
		Method:	SW846 8260B		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	0.63 J	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	.ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.22 J	1.0	ug/L
1,1,1-Trichloroethane	1.3	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	0.66 J	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	102	(73 - 122)	<u> </u>
1,2-Dichloroethane-d4	112	(61 - 128))
Toluene-d8	100	(76 - 110))
4-Bromofluorobenzene	99	(74 - 116))

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-009

GC/MS Volatiles

Matrix....: WG Lot-Sample #...: A6C080316-007 Work Order #...: H0V9G1AA

Date Sampled...: 03/07/06 11:50 Date Received..: 03/08/06 Analysis Date..: 03/14/06 Prep Date....: 03/14/06

Prep Batch #...: 6074144

Final Wgt/Vol..: 5 mL Dilution Factor: 1 Initial Wgt/Vol: 5 mL

	Method: SW846 8260B			
		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	_
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND ·	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ИD	1.0	ug/L	
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	107	(73 - 12	(2)	
1,2-Dichloroethane-d4	114	(61 - 12	(8)	
Toluene-d8	100	(76 - 11	.0)	
4-Bromofluorobenzene	98	(74 - 11	.6)	

Client Sample ID: GW-030706-JK-010

GC/MS Volatiles

Lot-Sample #...: A6C080316-008 Work Order #...: H0V9J1AA Matrix..... WG

Date Sampled...: 03/07/06 12:45 Date Received..: 03/08/06 Prep Date....: 03/14/06 Analysis Date..: 03/14/06

Prep Batch #...: 6074144

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT_	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ИD	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	\mathtt{ug}/\mathtt{L}
Tetrachloroethene	ИD	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ИD	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(73 - 12	(2)
1,2-Dichloroethane-d4	112	(61 - 12	8)
Toluene-d8	101	(76 - 11	.0)
4-Bromofluorobenzene	98	(74 - 11	6)

Client Sample ID: GW-030606-JK-02

GC/MS Volatiles

Lot-Sample #...: A6C080316-009 Work Order #...: H0V9M1AA Matrix..... WG

Date Sampled...: 03/06/06 15:30 Date Received..: 03/08/06 Analysis Date..: 03/14/06

Prep Date....: 03/14/06

Prep Batch #...: 6074144

Final Wgt/Vol..: 5 mL Initial Wqt/Vol: 5 mL Dilution Factor: 1

	Method	: SW846 82	260B	
	ресити	REPORTIN	IG UNITS	
PARAMETER	RESULT	LIMIT		
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND .	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
1.1-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	102	(73 - 12	22)	
1,2-Dichloroethane-d4	113	(61 - 12	28)	
Toluene-d8	99	(76 - 11	.0)	
4-Bromofluorobenzene	95	(74 - 11	.6)	

Client Sample ID: GW-030606-JK-04

GC/MS Volatiles

Lot-Sample #...: A6C080316-010 Work Order #...: H0V9R1AA Matrix....: WG

Date Sampled...: 03/06/06 16:40 Date Received..: 03/08/06 Prep Date.....: 03/14/06 Analysis Date..: 03/14/06

Prep Batch #...: 6074144

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

•		REPORTIN	G ·
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	0.29 J	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND .	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	${\sf ug/L}$
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS _	
Dibromofluoromethane	104	(73 - 12	2)
1,2-Dichloroethane-d4	113	(61 - 12	8)
Toluene-d8	109	(76 - 11	0)
4-Bromofluorobenzene	98	(74 - 11	6)
NOTE(S):			

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-11

GC/MS Volatiles

Lot-Sample #...: A6C080316-011 Work Order #...: H0V9X1AA Matrix..... WG

Date Sampled...: 03/07/06 10:05 Date Received..: 03/08/06 Prep Date....: 03/14/06 Analysis Date..: 03/14/06

Prep Batch #...: 6074144

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

•	Metnod SW846 82606				
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
Chloroethane	ND	1.0	ug/L		
Chloromethane	ND	1.0	ug/L		
1,1-Dichloroethane	ND	1.0	ug/L		
1,2-Dichloroethane	ND	1.0	ug/L		
cis-1,2-Dichloroethene	ND	1.0	ug/L		
trans-1,2-Dichloroethene	ND	1.0	ug/L		
1,1-Dichloroethene	ND	1.0	ug/L		
Methylene chloride	ND	1.0	ug/L		
Tetrachloroethene	ND	1.0	ug/L		
1,1,1-Trichloroethane	ND	1.0	ug/L		
1,1,2-Trichloroethane	ND	1.0	ug/L		
Trichloroethene	ND	1.0	ug/L		
Vinyl chloride	ND .	1.0	ug/L		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS	_		
Dibromofluoromethane	104	(73 - 122)			
1,2-Dichloroethane-d4	113	(61 - 128)	1		
Toluene-d8	102	(76 - 110)			
4-Bromofluorobenzene	99	(74 - 116)	1		

Client Sample ID: GW-030706-JK-12

GC/MS Volatiles

Lot-Sample #...: A6C080316-012 Work Order #...: H0V901AA Matrix....: WG

Date Sampled...: 03/07/06 11:15 Date Received..: 03/08/06 Analysis Date..: 03/14/06

Prep Date....: 03/14/06

Prep Batch #...: 6074144

Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL Dilution Factor: 1

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.62 J	1.0	ug/L
1,1,1-Trichloroethane	0.59 J	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	0.38 J	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
•	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 122	?)
1,2-Dichloroethane-d4	111	(61 - 128	3)
Toluene-d8	100	(76 - 110)}
4-Bromofluorobenzene	99	(74 - 116	5)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-13

GC/MS Volatiles

Lot-Sample #:	A6C080316-013	Work Order	# :	HOV921AA	Matrix: WG
			_	00100100	

Date Sampled...: 03/07/06 12:55 Date Received..: 03/08/06 Prep Date....: 03/14/06 Analysis Date..: 03/14/06

Prep Batch #...: 6074144

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	0.27 J	1.0	ug/L
1,1,2-Trichloroethane	ND '	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 12	(2)
1,2-Dichloroethane-d4	114	(61 - 12	28)
Toluene-d8	99	(76 - 11	.0)
4-Bromofluorobenzene	97	(74 - 11	.6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-14

GC/MS Volatiles

Matrix..... WG Lot-Sample #...: A6C080316-014 Work Order #...: H0V931AA

Date Sampled...: 03/07/06 13:40 Date Received..: 03/08/06 Analysis Date..: 03/14/06

Prep Date....: 03/14/06

Prep Batch #...: 6074144

Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL Dilution Factor: 1

..: SW846 8260B

	Method Sw846 8280B		
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND ·	1.0	ug/L
1,2-Dichloroethane	ИD	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ŇD	1.0	\mathtt{ug}/\mathtt{L}
1,1-Dichloroethene	ND	1.0	${\tt ug/L}$
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	2.5	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	${\tt ug/L}$
1,1,2-Trichloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}
Frichloroethene	ND	1.0	$\mathtt{ug/L}$
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	<u> </u>
Dibromofluoromethane	102	(73 - 12	(2)
1,2-Dichloroethane-d4	110	(61 - 12	
Toluene-d8	98	(76 - 11	.0)
4-Bromofluorobenzene	97	(74 - 11)	.6)

Client Sample ID: GW-030706-JK-15

GC/MS Volatiles

Lot-Sample #...: A6C080316-015 Work Order #...: H0V951AA Matrix....: WG

Date Sampled...: 03/07/06 13:45 Date Received..: 03/08/06 Analysis Date..: 03/15/06

Prep Date....: 03/15/06

Prep Batch #...: 6075040

Final Wgt/Vol..: 5 mL Initial Wgt/Vol: 5 mL Dilution Factor: 1

	Method: SW846 8260B			
		REPORTING		·
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L ·	
Tetrachloroethene	3.2	1.0	ug/L	•
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Dibromofluoromethane	89	(73 - 122))	
1,2-Dichloroethane-d4	89	(61 - 128))	
Toluene-d8	92	(76 - 110) .	
4-Bromofluorobenzene	80	(74 - 116)	

Client Sample ID: GW-030706-JK-16

GC/MS Volatiles

Lot-Sample #...: A6C080316-016 Work Order #...: H0V961AA Matrix..... WG

Date Sampled...: 03/07/06 14:40 Date Received..: 03/08/06 Prep Date....: 03/15/06 Analysis Date..: 03/15/06

Prep Batch #...: 03/15/06 Prep Batch #...: 6075040

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	3
PARAMETER	RESULT	_ LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ИD	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	13	1.0	ug/L
1,1,1-Trichloroethane	0.41 J	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	0.81 J	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	92	(73 - 122	2)
1,2-Dichloroethane-d4	89	(61 - 128	3)
Toluene-d8	93	(76 - 110	O)
4-Bromofluorobenzene	79	(74 - 116)	5)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030706-JK-17

GC/MS Volatiles

Lot-Sample #...: A6C080316-017 Work Order #...: H0V971AA Matrix...... WG

Date Sampled...: 03/07/06 15:00 Date Received..: 03/08/06 Prep Date....: 03/15/06 Analysis Date..: 03/15/06

Prep Batch #...: 6075040

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND .	1.0	ug/L
Chloromethane	ND	. 1.0	ug/L
1.1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND .	1.0	ug/L
1.1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND .	1.0	ug/L
1.1.1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	91	(73 - 122))
1,2-Dichloroethane-d4	87	(61 - 128)	}
roluene-d8	94	(76 - 110))
4-Bromofluorobenzene	80	(74 - 116	

Client Sample ID: TRIP BLANKS

GC/MS Volatiles

Lot-Sample #: A6C080316-018		Matrix WV
Date Sampled: 03/07/06	Date Received: 03/08/06	
Prep Date: 03/15/06	Analysis Date: 03/15/06	•
Prep Batch #: 6075040		J
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL

Method.....: SW846 8260B

	•	REPORTIN	G
ARAMETER	RESULT	LIMIT	UNITS
hloroethane	ND	1.0	ug/L
nloromethane	ND	1.0	$\mathtt{ug/L}$
1-Dichloroethane	ND	1.0	ug/L
2-Dichloroethane	ND	1.0	ug/L
s-1,2-Dichloroethene	ND	1.0	ug/L
ans-1,2-Dichloroethene	ND	1.0	$\mathtt{ug/L}$
1-Dichloroethene	ND	1.0	$\mathtt{ug/L}$
thylene chloride	5.6 B	1.0	ug/L
trachloroethene	ND	1.0	ug/L
1,1-Trichloroethane	ND	1.0	ug/L
1,2-Trichloroethane	ND	1.0	$\mathtt{ug/L}$
ichloroethene	ND	1.0	ug/L
nyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
RROGATE	RECOVERY	LIMITS_	
oromofluoromethane .	93	(73 - 12	2)
?-Dichloroethane-d4	90	(61 - 12	8)
uene-d8	92	(76 - 11	0)
Bromofluorobenzene	, 80·	(74 - 11	6)

NOTE(S):

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: GW-030806-JK-21

GC/MS Volatiles

Lot-Sample #: A6C100195-001 W	Nork Order #: H02PH1AA	Matrix: WG
-------------------------------	------------------------	------------

Date Sampled...: 03/08/06 10:40 Date Received..: 03/10/06

Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

	4	REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	4.7	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	0.45 J	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	0.52 J	1.0	ug/L
1,1,1-Trichloroethane	12	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	21	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 12	2)
1,2-Dichloroethane-d4	113	(61 - 12	8)
Toluene-d8	100	(76 - 11	0)
4-Bromofluorobenzene	97	(74 - 11	6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030806-JK-22

GC/MS Volatiles

Lot-Sample #...: A6C100195-002 Work Order #...: H02PV1AA Matrix....: WG

Date Sampled...: 03/08/06 11:40 Date Received..: 03/10/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06

Prep Batch #...: 6076075

Final Wgt/Vol..: 5 mL Initial Wgt/Vol: 5 mL Dilution Factor: 1

Method.....: SW846 8260B

*		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ИD	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ИD	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND .	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	0.68 J	1.0	ug/L
1,1,2-Trichloroethane	ИD	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	105	(73 - 122)
1,2-Dichloroethane-d4	115	(61 - 128)
Toluene-d8	100	(76 - 110)
4-Bromofluorobenzene	96	(74 - 116)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030806-JK-23

GC/MS Volatiles

Matrix....: WG Lot-Sample #...: A6C100195-003 Work Order #...: H02PX1AA

Date Sampled...: 03/08/06 11:45 Date Received..: 03/10/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06

Prep Batch #...: 6076075

Tritial Wat/Vol. 5 ml

Dilution Factor: 1	Initial Wgt/Vol: 5 mL Final Wgt/Vol: Method: SW846 8260B				
		REPORTIN	G		
PARAMETER	RESULT	LIMIT	UNITS	<u> </u>	
Chloroethane	ND	1.0	ug/L	•	
Chloromethane	ND	1.0	ug/L	•	
1,1-Dichloroethane	ND	1.0	ug/L		
1,2-Dichloroethane	ND	1.0	${\tt ug/L}$		
cis-1,2-Dichloroethene	ND	1.0	ug/L	•	
trans-1,2-Dichloroethene	ND	1.0	ug/L		
1,1-Dichloroethene	ND	1.0	ug/L		
Methylene chloride	ND	1.0	ug/L		
Tetrachloroethene	ND .	1.0	${\tt ug/L}$		
1,1,1-Trichloroethane	ИD	1.0	ug/L		
1,1,2-Trichloroethane	ND	1.0	ug/L		
Trichloroethene	ND	1.0	ug/L		
Vinyl chloride	ND	1.0	ug/L		
	PERCENT	RECOVERY	•		
SURROGATE	RECOVERY	LIMITS_			
Dibromofluoromethane	103	(73 - 12	2)		
1,2-Dichloroethane-d4	113	(61 - 12	8)	,	
Toluene-d8	98	(76 - 11	0)		
4-Bromofluorobenzene	93	(74 - 11	6)		

Client Sample ID: GW-030806-JK-24

GC/MS Volatiles

Lot-Sample #...: A6C100195-004 Work Order #...: H02P21AA Matrix..... WG

Date Sampled...: 03/08/06 12:30 Date Received..: 03/10/06 Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06 Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	${\tt ug/L}$
Methylene chloride	ИD	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}
1,1,2-Trichloroethane	ИD	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	105	(73 - 122)	-
1,2-Dichloroethane-d4	113	(61 - 128)	1
Toluene-d8	100	(76 - 110)	H
4-Bromofluorobenzene	97	(74 - 116)	l .

Client Sample ID: GW-030806-JK-25

GC/MS Volatiles

Lot-Sample #...: A6C100195-005 Work Order #...: H02P61AA Matrix...... WG

Date Sampled...: 03/08/06 13:35 Date Received..: 03/10/06 Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06 Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

	Method	: SW846 820	50B	
·		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	\mathtt{ug}/\mathtt{L}	
1,1-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ИD	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	\mathtt{ug}/\mathtt{L}	
Vinyl chloride	ND	1.0	ug/L	
•	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	103	(73 - 122	2)	
1,2-Dichloroethane-d4	112	(61 - 128	3)	
Toluene-d8	99	(76 - 110))	
4-Bromofluorobenzene	. 96 .	(74 - 116)	5)	

Client Sample ID: GW-030806-JK-18

GC/MS Volatiles

Lot-Sample #...: A6C100195-006 Work Order #...: H02P81AA Matrix....: WG

Date Sampled...: 03/08/06 09:30 Date Received..: 03/10/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06

Prep Batch #...: 6076075

Final Wgt/Vol..: 5 mL Dilution Factor: 1 Initial Wgt/Vol: 5 mL

Method.....: SW846 8260B

·		REPORTIN	
PARAMETER	RESULT	<u>LIMIT</u>	<u>UNITS</u>
Chloroethane	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND-	1.0	\mathtt{ug}/\mathtt{L}
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1.1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	· ug/L
1.1.2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	, PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS_	
Dibromofluoromethane	105	(73 - 12	2)
1,2-Dichloroethane-d4	. 113	(61 - 12	8)
Toluene-d8	100	(76 - 11	0)
4-Bromofluorobenzene	98	(74 - 11	6)

Client Sample ID: GW-030806-JK-19

GC/MS Volatiles

Lot-Sample #: A6C1	00195-007 Work	Order #:	H02QE1AA	Matrix WG
- ,			4 4	

Date Sampled...: 03/08/06 11:00 Date Received..: 03/10/06 Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		DEDODMIN	
PARAMETER	RESULT	REPORTIN LIMIT	UNITS
Chloroethane	ND	1.0	ug/L
Chloromethane	ND .	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	2.3	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	$\mathtt{ug/L}$
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	1.8	1.0	ug/L
1,1,1-Trichloroethane	0.22 J	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	12	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	(73 - 12	22)
l,2-Dichloroethane-d4	112	(61 - 12	28)
Toluene-d8	99	(76 - 11	.0)
4-Bromofluorobenzene	97	(74 - 11)	.6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: GW-030806-JK-20

GC/MS Volatiles

Lot-Sample #...: A6C100195-008 Work Order #...: H02QJ1AA Matrix...... WG

Date Sampled...: 03/08/06 11:50 Date Received..: 03/10/06 Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06
Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING
PARAMETER	RESULT	LIMIT UNITS
Chloroethane	ND	1.0 ug/L
Chloromethane	ND	1.0 ug/L
1,1-Dichloroethane	ND	$1.0~{ m ug/L}$
1,2-Dichloroethane	ND	1.0 ug/L
cis-1,2-Dichloroethene	ND	1.0 ug/L
trans-1,2-Dichloroethene	ND	1.0 ug/L
1,1-Dichloroethene	ND	1.0 ug/L
Methylene chloride	ND	1.0 ug/L
Tetrachloroethene	ND	1.0 ug/L
1,1,1-Trichloroethane	ND	1.0 ug/L
1,1,2-Trichloroethane	ND	1.0 ug/L
Trichloroethene	ND	1.0 ug/L
Vinyl chloride	ND	1.0 ug/L
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	103	(73 - 122)
1,2-Dichloroethane-d4	113	(61 - 128)
Toluene-d8	98	(76 - 110)
4-Bromofluorobenzene	95	(74 - 116)

Client Sample ID: GW-030806-JK-26

GC/MS Volatiles

Lot-Sample #...: A6C100195-009 Work Order #...: H02QM1AA Matrix..... WG

Date Sampled...: 03/08/06 13:30 Date Received..: 03/10/06 Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06 Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

	Method	: SW846 82	.60B
		REPORTIN	l G
PARAMETER	 RESULT	LIMIT	UNITS
Chloroethane	 ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	$\mathtt{ug/L}$
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	NĐ	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	 RECOVERY	LIMITS	·——
Dibromofluoromethane	 104	(73 - 12	2)
1,2-Dichloroethane-d4	114	(61 - 12	8)
Toluene-d8	96	(76 - 11	0)
4-Bromofluorobenzene	96	(74 - 11	6)

Client Sample ID: GW-030806-JK-27

GC/MS Volatiles

Lot-Sample #...: A6C100195-010 Work Order #...: H02QR1AA Matrix...... WG

Date Sampled...: 03/08/06 13:35 Date Received..: 03/10/06 Prep Date....: 03/16/06 Analysis Date..: 03/16/06

Prep Batch #...: 6076075

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

DI DI VERRED	DECHI M	REPORTING LIMIT	UNITS
PARAMETER	RESULT		
Chloroethane	ND	1.0	ug/L
Chloromethane	ИD	1.0	ug/L
1,1-Dichloroethane	NĎ	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ИD	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	106	(73 - 122)	
1,2-Dichloroethane-d4	114	(61 - 128)	
Toluene-d8	100	(76 - 110)	
4-Bromofluorobenzene	96	(74 - 116)	

Client Sample ID: GW-030806-JK-28

GC/MS Volatiles

Matrix....: WG Lot-Sample #...: A6C100195-011 Work Order #...: H02QT1AA

Date Sampled...: 03/08/06 14:30 Date Received..: 03/10/06 Analysis Date..: 03/16/06

Prep Date....: 03/16/06

Prep Batch #...: 6076075

Final Wgt/Vol..: 5 mL Dilution Factor: 1 Initial Wgt/Vol: 5 mL

.: SW846 8260B

	Method SW846 8260B			
		REPORTIN	ıG	
PARAMETER	RESULT	LIMIT	UNITS	
Chloroethane	ND	1.0	$\mathtt{ug/L}$	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	${\tt ug/L}$	
1,2-Dichloroethane	ND	1.0	ug/L	
cis-1,2-Dichloroethene	ND .	1.0	ug/L	
trans-1,2-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	<u>LIMITS</u>		
Dibromofluoromethane	104	(73 - 12	(2)	
1,2-Dichloroethane-d4	114	(61 - 12	:8)	
Toluene-d8	99	(76 - 11	.0)	
4-Bromofluorobenzene	95	(74 - 11	.6)	

Client Sample ID: GW-030906-JK-30

GC/MS Volatiles

Lot-Sample #:	A6C100195-012	Work Order #:	H02QV1AA	Matrix WG
Date Sampled:	03/09/06 10:30	Date Received:	03/10/06	•
Prep Date:	03/17/06	Analysis Date:	03/17/06	

Prep Batch #...: 6079119

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method...... SW846 8260B

		REPORTING	3
PARAMETER	RESULT	<u>LIMI</u> T	UNITS
Chloroethane	ИD	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0 .	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND .	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Tetrachloroethene	33	1.0	ug/L
1,1,1-Trichloroethane	0.52 J	1.0	ug/L
1,1,2-Trichloroethane	NĐ	1.0	ug/L
Trichloroethene	13	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	<u></u>
Dibromofluoromethane	102	(7,3 - 122	2)
1,2-Dichloroethane-d4	115	(61 - 128	3)
Toluene-d8	102	(76 - 110))
4-Bromofluorobenzene	95	(74 - 116	5)

J Estimated result. Result is less than RL.

NOTE(S):

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: A6C100195-013	Work Order #: H02QW1AA	Matrix: WQ
Date Sampled: 03/09/06	Date Received: 03/10/06	
Prep Date: 03/16/06	Analysis Date: 03/16/06	
Prep Batch #: 6076075	•	
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wqt/Vol: 5 mL

Method.....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Chloroethane	ND .	1.0	${\tt ug/L}$
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ИD	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND .	1.0	ug/L
trans-1,2-Dichloroethene	ND .	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	2.2 B	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ųg/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 12	22)
1,2-Dichloroethane-d4	115	(61 - 12	28)
Toluene-d8	99	(76 - 11	.0)
4-Bromofluorobenzene	95	(74 - 13	6)

NOTE(S):

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

	861 Chi	5 W. B icago,	Bryn Mawr Avenue Illinois 60631	(Laboratory Name): ST NORTH (ALTER													
			9933 phone 6421 fax	REFERENCE NUMBER:					PROJECT NAME:								
	······		CUSTODY RECORD	36469					Ĺ	CXN	WRI	2		,	· · · · · · · · · · · · · · · · · · ·]
	PLER'S	160	Rusy 6 PRINTED NAME:	VATE Zung Con	No. OF CONTAINERS	PARAMETERS						REMARKS					
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC	ATION No.		IPLE TRIX		REMARKS						· CEMANA	_		
•	Blulut	1520	6W-030606-JK-001		1/2	<u>ن</u>	3	Y		 		 			ļ. <u> </u>		\dashv
2	14	1620	6W-030606-1K-003		 i		13	Y		 _ ! _		+		-			\dashv
3	5/7/00	لعنين	5W-03000 JK-005				3	У		-		-		_	 		-
4		10/0	5W-U36766-JK 006				3	X		-		 +					\dashv
5			64-436724 JK 647				3	X		1		 	- -	-}	 		-
6			11m-036700 JK - CLE				3	X				1		-	<u> </u>		┪
7			6W-03070x-1K-009				3	X		+		1-		<u> </u>	 		┨
٤	₩	1245	6W-036766-14-010				15	¥		+		 }		 -	 		1
							 	╀┤		+ +							┨
	ļ	ļ <u> </u>					+	+-		++				+-	 		┨
	ļ	<u> </u>					 	 		++		++	-	+			┪
		<u> </u>			-					++			_+-	-	 		ᅥ
		<u> </u>		<u></u>			+	+		+-	+	 		+	╁		┨
	ļ	<u> </u>						+		+		+		+	1	·	┪
	<u> </u>		TOTAL WINDER OF CONTA	AINEDS			24	}	LL_	<u> </u>					<u></u>		ᅥ
		- , , -	TOTAL NUMBER OF CONTA	DATE: ٽ	10/07		ECEIVE									DATE:	╕
RELI	VOUISHE	M. 1	Riedha		200		2	יום ען				_ TIME:	٦				
			XVIIIV	DATE:				ED BY:								DATE:	٦
RELI	MOZUSHED	BY:	0 '	TIME:			3)					_ TIME:					
				DATE:			ECEIVE	ED BY:								DATE:	
RELINQUISHED BY: TIME:						TIME:								TIME:			
METHOD OF SHIPMENT: FOLK AIR BILL No. 85 3 8380 8662																	
White -Fully Executed Copy Yellow -Receiving Laboratory Copy Pink -Shipper Copy Goldenrod -Sampler Copy						DATE: 3/8/06 TIME: 9!454							12713				

CON	ES	861 Chi	5 W. Bi cago, I	OVERS & ASSOCIATES ryn Mawr Avenue Illinois 60631	SHIPPED TO (Laboratory Name): SEVERN TRENT LABS - N									RTH	CA —	Ma	₩ 		
	<u></u>	(77	3)380-6	9933 phone 6421 fax CUSTODY RECORD	REFERENCE NUMBER:					PROJECT NAME: REXNORD									
SAMP SIGNA	LEF	₹'\$	7 .		EFF KLODZIET:	3K1		No. OF CONTAINERS	PARAMETERS REMARKS										
SEQ. No.	D/	ATE .	TIME	SAMPLE IDENTIFIC		MA	APLE TRIX		4	ري /	//		/./		//	//	_		
	<u>1 0</u>	106	1530	GW-030606-JK- GW-030606-JK-	02	WA	ER.	3	X		_		\-	_					
	34.8 -	,	1440	GW-030606-TK-	034			3	×		<u> </u>			_ -			<u> </u>		
	3/7	104	100.5	GW-030606- JK-]/			3	X					- 	-	-	 		
f	1	<u> </u>	1115		12			3	X		1-					-			
		1	1255		13		<u> </u>	3	X						-	+-	<u> </u>		
		 	1340		<u> 14</u>		1	3	X							+-	 -	· · · · · · · · · · · · · · · · · · ·	
	_	 	1345		15		1_	3	×		-	<u> </u>					 		
		 	1440		16		1	3	X			ļ	-				 		
		 	1500		17	_ _	ـــــ	3	×		+-	ļ		-			 		
	\	1		TRIP BLANKS		_	<u> </u>	3	X			 		_		+	 		
		* ——						. 	-			┧	\vdash		-		 		
								 				 	}+						
			1					 			 	+	╁╌╁			+	+-		
			1									+	├			┼	╁		
		····						1				<u>.l</u> _		1_			<u> </u>		
				TOTAL NUMBER OF CONT	AINERS	1	,	30										DATE:	
RELI	NOL	JIŞKE	DEY!	11	DATE: 3	7/0	Q R	ECEIVE	ED BY:									TIME:	
(1).		[]4	LO	Wylespa		<u>800</u>							==					DATE:	<u> </u>
RELI	NQI	JISHE	BY:		DATE:		RECEIVED BY:									TIME:			
2				<i>V</i> ,	TIME:				=====		<u>_</u>							DATE:	
	NQ	UISHE	D BY:		DATE:			ECEIVI	ED 84:	•								TIME:	
<u>③</u>					1 IIVIC.									***	11:	 -			
METHOD OF SHIPMENT: FED EX							<u></u>	AIR			85								
White -Fully Executed Copy Yellow -Receiving Laboratory Copy Pink -Shipper Copy									DATE: 3/8/06 TIME: 9/454										
	1/10/10/10/10/10/10/10/10/10/10/10/10/10																		

CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone							SHIP (Labo	SHIPPED TO (Laboratory Name): SEVERN TRENT LARSS - NORTH CANTON											27					
V.			6421 fa		REFE	RENCE NUI	₽RC	JEC	TN	ME	· K	EX	UOR	2										
CHAIN-OF-CUSTODY RECORD								409						•				4 3	¥					
SAMPLER'S SIGNATURE: SIGNATURE: JE NAME: JE						Errka	LODZIETSI	/			RAM		SS	5/	TA S	16th	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	String of the st	W Car	7_				
SEQ. No.	DATE	TIME	s	AMPLI	E IDEI	NTIFIC	CATIO	N No.	MA	SAMPLE MATRIX		45	1.5 10.5 10.5 10.5	198			NA STAN	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Ses,		R	EMARKS	
	3/8/06		GW-	-030	806-	-JK	- 21		WA	TER	9							:	<u> </u>				MS /NSD	\Box
		1140					<u>22</u> 23		4-4		3	X			_	1								
	-	1145	-						╁╌╂		3	X				-	-	ļ		_				
		1230 1335	_				24 25		-		3	×		<u>-</u> _	-		+			$-\downarrow$				
		 	 	.		-	18	, , , , , , , , , , , , , , , , , , , ,	+		3	X	-		+		-						melman	_
		1100	 				<u>15</u> 		+-		3	X				+	+		<u> </u>	,—			ms/ms0	\dashv
	-1	1150					-/, Zv				3	×			+	<u> </u>	+							
		1330					26		 		3	X			 	+	 	 -						
		1335					27				3	X					 	 					· · · · · · · · · · · · · · · · · · ·	
	7	1430	4			v	22				3	X												
	39100	0950	SW-	-0309	106-	JK-	29			<u></u>	11	!	X	K X	×	X	X	×	X					
		1030		- 030 ₆		グズー	<u> 30</u>			<u>/</u>	3	X	<u>_</u>					ļ	ļ					
	<u> </u>	<u> </u>	TRIP	BLANK			·•·			<u> </u>		X	-	_		4	-	_	<u> </u>		•			
		<u> </u>	TOTA	L NUME	BER OF	CONT	AINERS		<u> Т</u>		60								<u> </u>	<u> </u>				
RELI	IQUISHED	BY: /	11//	and.	- 1			DATE: 3/9	106		CEIVE	O BY:	•••									D	ATE:	
<u> </u>		_///	110	oll zu	THE			TIME: 16	20	2	<u>) — </u>											TI	ME:	
RELI	IQUISHED	BY:	<i>/</i>	01	/			DATE:			CEIVE	O BY:				٠					-		ATE:	
<u> </u>								TIME:		3			<u> </u>	<u> </u>									ME:	
RELII	NQUISHED	BY:						DATE: TIME:	RECEIVED BY:								<u> </u>	IME:	\dashv _					
METHOD OF SHIPMENT: FEW FX AIR BILL No. 8573 8380 865/								Cantor																
Yell Pink	White -Fully Executed Copy SAMPLE TEAM: RECEIVED FOR LABORATORY BY:									North Ca														
100	1-00(SOU	RCE)GN-	CO004																					닐

APPENDIX C

DATA VALIDATION MEMOS AND CHAIN OF CUSTODY FORMS

8615 W. Bryn Mawr Avenue, Chicago, Illinois 60631 Telephone: (773) 380-9933 Fax: (773) 380-6421

www.CRAworld.com

MEMORANDUM

To:

Doug Soutter

REF. NO.:

030409

FROM:

Julie Czech/lg

DATE:

May 5, 2006

RE:

Data Quality Assessment and Validation for the Groundwater Samples Collected at the

Rexnord Site in Downers Grove, Illinois

The following details the data quality assessment and validation conducted for the groundwater samples collected during the February and March 2006 investigation at the Rexnord Site Downers Grove, Illinois. The samples identified in Table 1 were analyzed for a select list of volatile organic compounds (VOCs) by Severn Trent Laboratories, Inc. (STL) of North Canton, Ohio. The method of analysis is identified in Table 2. The quality assurance criteria used to assess the data were established by the quality assurance project plan¹.

Holding Time Period

The holding time period is presented in Table 3. The samples were prepared and analyzed within the required holding time period.

Gas Chromatography/Mass Spectrometry (GC/MS) Instrument Performance Checks

To ensure adequate mass resolution, identification, and sensitivity, the performance of each GC/MS instrument used for VOC analysis was checked at the beginning of each 12-hour analysis period using bromofluorobenzene. The results of all instrument performance checks were acceptable.

Initial Calibration Data

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Initial calibration acceptance criteria for the VOC analyses required that all compounds meet a method-specified minimum relative response factor (RRF) and maximum relative standard deviation (%RSD). The initial calibration data were acceptable.

Continuing Calibration Data

To ensure that each instrument was capable of producing acceptable quantitative data throughout the analysis period, routine instrument calibration checks were performed. Continuing calibration acceptance criteria for the VOCs analyses required that all compounds meet a method-specified minimum RRF and maximum percent difference (%D) between the initial calibration mean RRF and the continuing calibration

¹ Application of quality assurance criteria was consistent with the relevant criteria in "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", EPA 540/R-99/008, October 1999.

RRF. Table 4 presents the sample data that should be qualified. The remaining continuing calibration data were acceptable.

Method Blank Samples

Method blank sample data were evaluated to verify that analytes detected in the investigative samples were not attributable to laboratory conditions or procedures. Methylene chloride was detected in certain method blank samples. Qualification of the associated sample data was not required because this analyte was not detected in the associated investigative samples. The remaining method blank data were acceptable.

Internal Standards Performance Data

Overall instrument performance for the VOC analyses was monitored by evaluating internal standards peak area and retention time data. The internal standards data were acceptable.

Surrogate Compound Analyses

Method performance on individual samples analyzed for VOCs was evaluated by the percent recovery and retention time data of surrogate compound spikes. The surrogate compound percent recovery data were acceptable.

Matrix Spike/Matrix Spike Duplicate Sample Analyses

Analytical accuracy and precision relative to the sample matrices were evaluated by the percent recovery and relative percent difference (RPD) data from matrix spike/matrix spike duplicate (MS/MSD) sample analyses. The percent recovery and RPD data were acceptable for project-specific MS/MSD samples.

Laboratory Control Sample/Laboratory Control Sample Duplicate Sample Analyses

The accuracy and precision of the PCB analyses were assessed by evaluating the percent recovery and RPD data from laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analyses. The LCS/LCSD percent recovery and RPD data were acceptable.

Field Quality Control Sample Analyses

The field quality control samples collected during the sampling event consisted of trip blank, field equipment rinsate blank, and field duplicate samples.

To monitor potential groundwater sample cross-contamination by VOCs during sample transportation and storage, trip blank samples were submitted to the laboratory for VOC analysis with the groundwater samples. Methylene chloride was detected in certain trip blank samples. Qualification of the associated sample data was not required because this analyte was not detected in the associated investigative samples. The remaining trip blank sample data were acceptable.

To monitor the efficacy of the decontamination procedure used for non-dedicated monitoring well sampling equipment, field equipment rinsate blank samples were collected and analyzed. Target analytes were not detected in the field blank samples.

Overall precision for the sampling and analysis event was evaluated by field duplicate sample data. The QAPP specified an advisory RPD limit of 50 percent for field duplicate sample data (for sample results greater than or equal to five times their respective reporting limits). Table 5 summarizes the results for analytes detected in investigative and field duplicate samples. The field duplicate RPD data met the acceptance criteria in the QAPP, which indicates that an acceptable level of overall precision was achieved.

Completeness

Completeness, as determined by the total number of usable results versus the total number of results, was required to be 90 percent or greater. The completeness goal was met.

Overall Assessment

The data were found to be suitable for their intended use with the qualifications noted.

Attachments

SAMPLE IDENTIFICATION NUMBERS REXNORD SITE DOWNERS GROVE, ILLINOIS

Sample ID

GW-021306-DS-01
GW-021306-CA-02
GW-021306-CA-03
GW-021306-CA-04
GW-021406-CA-05
GW-021406-CA-06
GW-021406-CA-07
GW-021406-CA-08 GW-021406-CA-09
GW-021406-CA-09
GW-021406-CA-10
GW-021506-CA-11
GW-030606-JK-001
GW-030606-JK-002
GW-030606-JK-003
GW-030606-JK-004
GW-030706-JK-005
GW-030706-JK-006
GW-030706-JK-007
GW-030706-JK-008
GW-030706-JK-009
GW-030706-JK-010
GW-030706-JK-011
GW-030706-JK-012
GW-030706-JK-013
GW-030706-JK-014
GW-030706-JK-015
GW-030706-JK-016 GW-030706-JK-017
GW-030806-JK-18
GW-030806-JK-19
GW-030806-JK-20
GW-030806-JK-21
GW-030806-JK-22
GW-030806-JK-23
GW-030806-JK-24
GW-030806-JK-25
GW-030806-JK-26
GW-030806-JK-27
GW-030806-JK-28
CW-030906-TK-30

SUMMARY OF ANALYTICAL METHODS REXNORD SITE DOWNERS GROVE, ILLINOIS

Parameter

Analytical Method 1

select Volatile Organic Compounds (VOCs)

SW-846 8260B

¹ Methods were referenced from: SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA SW-846, 3rd Edition with Updates I through IIIA.

HOLDING TIME PERIODS REXNORD SITE DOWNERS GROVE, ILLINOIS

Parameter Holding Time Period

VOCs - 14 days from sample collection to completion of analysis

SUMMARY OF SAMPLE DATA QUALIFIED FOR CONTINUING CALIBRATION ACCEPTANCE CRITERIA VIOLATION REXNORD SITE DOWNERS GROVE, ILLINOIS

Analyte	Associated Samples	Qualifier ¹
Methylene chloride	GW-030606-JK-001	UJ
	GW-030606-JK-003	UJ
	GW-030706-JK-005	UJ
	GW-030706-JK-006	UJ

¹ The sample results are qualified as:

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

TABLE 5

SUMMARY OF DETECTED ANALYTES FROM FIELD DUPLICATE SAMPLE SETS REXNORD SITE DOWNERS GROVE, ILLINOIS

Analyte	Investigative Sample GW-021306-CA-02 (µg/L)	Duplicate Sample GW-021306-CA-03 (μg/L)	RPD¹
Tetrachloroethene	$0.52J^2$	0.50J	3.9
Analyte	Investigative Sample GW-030706-JK-007 (µg/L)	Duplicate Sample GW-030706-JK-008 (μg/L)	RPD¹
1,1-Dichloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene	0.66J 0.22J 1.3 0.71J	0.63J 0.22J 1.3 0.66J	4.7 0 0 7.3
Analyte	Investigative Sample GW-030706-JK-014 (µg/L)	Duplicate Sample GW-030706-JK-015 (μg/L)	RPD ¹
Tetrachloroethene	2.5	3.2	25

¹ RPD - Relative Percent Difference

 $^{^{\}rm 2}$ J - Analyte concentration between method detection limit and reporting limit